IDEAS home Printed from https://ideas.repec.org/r/enp/wpaper/eprg0712.html
   My bibliography  Save this item

Incorporating both Undesirable Outputs and Uncontrollable Variables into DEA: the performance of Chinese Coal-Fired Power Plants

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jaraitė, Jūratė & Di Maria, Corrado, 2012. "Efficiency, productivity and environmental policy: A case study of power generation in the EU," Energy Economics, Elsevier, vol. 34(5), pages 1557-1568.
  2. Wu, Jie & Li, Mingjun & Zhu, Qingyuan & Zhou, Zhixiang & Liang, Liang, 2019. "Energy and environmental efficiency measurement of China's industrial sectors: A DEA model with non-homogeneous inputs and outputs," Energy Economics, Elsevier, vol. 78(C), pages 468-480.
  3. Gongbing Bi & Yan Luo & Jingjing Ding & Liang Liang, 2015. "Environmental performance analysis of Chinese industry from a slacks-based perspective," Annals of Operations Research, Springer, vol. 228(1), pages 65-80, May.
  4. Ke Wang & Chia-Yen Lee & Jieming Zhang & Yi-Ming Wei, 2018. "Operational performance management of the power industry: a distinguishing analysis between effectiveness and efficiency," Annals of Operations Research, Springer, vol. 268(1), pages 513-537, September.
  5. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
  6. Stefan Seifert & Astrid Cullmann & Christian von Hirschhausen, 2014. "Technical Efficiency and CO2 Reduction Potentials: An Analysis of the German Electricity Generating Sector," Discussion Papers of DIW Berlin 1426, DIW Berlin, German Institute for Economic Research.
  7. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
  8. Hao Xu & Yeqing Wang & Hongwei Liu & Ronglu Yang, 2020. "Environmental Efficiency Measurement and Convergence Analysis of Interprovincial Road Transport in China," Sustainability, MDPI, vol. 12(11), pages 1-16, June.
  9. Cordero Ferrera, Jose Manuel & Alonso Morán, Edurne & Nuño Solís, Roberto & Orueta, Juan F. & Souto Arce, Regina, 2013. "Efficiency assessment of primary care providers: A conditional nonparametric approach," MPRA Paper 51926, University Library of Munich, Germany.
  10. Du, Limin & Lu, Yunguo & Ma, Chunbo, 2022. "Carbon efficiency and abatement cost of China's coal-fired power plants," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
  11. Ma, Chunbo & Zhao, Xiaoli, 2015. "China's electricity market restructuring and technology mandates: Plant-level evidence for changing operational efficiency," Energy Economics, Elsevier, vol. 47(C), pages 227-237.
  12. Jun-Fei Chu & Jie Wu & Ma-Lin Song, 2018. "An SBM-DEA model with parallel computing design for environmental efficiency evaluation in the big data context: a transportation system application," Annals of Operations Research, Springer, vol. 270(1), pages 105-124, November.
  13. Eguchi, Shogo & Takayabu, Hirotaka & Lin, Chen, 2021. "Sources of inefficient power generation by coal-fired thermal power plants in China: A metafrontier DEA decomposition approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  14. Kerstens, Kristiaan & Van de Woestyne, Ignace, 2014. "Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data," European Journal of Operational Research, Elsevier, vol. 233(3), pages 749-758.
  15. Shen, Zhiyang & Wu, Haitao & Bai, Kaixuan & Hao, Yu, 2022. "Integrating economic, environmental and societal performance within the productivity measurement," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
  16. Jose M. Cordero & Cristina Polo & Daniel Santín, 2020. "Assessment of new methods for incorporating contextual variables into efficiency measures: a Monte Carlo simulation," Operational Research, Springer, vol. 20(4), pages 2245-2265, December.
  17. Sahoo, Biresh K. & Luptacik, Mikulas & Mahlberg, Bernhard, 2011. "Alternative measures of environmental technology structure in DEA: An application," European Journal of Operational Research, Elsevier, vol. 215(3), pages 750-762, December.
  18. Ke Wang & Jieming Zhang & Yi-Ming Wei, 2017. "Operational and environmental performance in China¡¯s thermal power industry: Taking an effectiveness measure as complement to an efficiency measure," CEEP-BIT Working Papers 100, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  19. Santos, Marllen & González, Mario, 2019. "Factors that influence the performance of wind farms," Renewable Energy, Elsevier, vol. 135(C), pages 643-651.
  20. Shogo Eguchi, 2022. "CO 2 Reduction Potential from Efficiency Improvements in China’s Coal-Fired Thermal Power Generation: A Combined Approach of Metafrontier DEA and LMDI," Energies, MDPI, vol. 15(7), pages 1-19, March.
  21. Zhang, Maolong & Du, Xiaoze & Pang, Liping & Xu, Chao & Yang, Lijun, 2016. "Performance of double source boiler with coal-fired and solar power tower heat for supercritical power generating unit," Energy, Elsevier, vol. 104(C), pages 64-75.
  22. Wen Guo & Tao Sun & Hongjun Dai, 2017. "Efficiency Allocation of Provincial Carbon Reduction Target in China’s “13·5” Period: Based on Zero-Sum-Gains SBM Model," Sustainability, MDPI, vol. 9(2), pages 1-18, January.
  23. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
  24. Zhang, Chunhong & Liu, Haiying & Bressers, Hans Th.A. & Buchanan, Karen S., 2011. "Productivity growth and environmental regulations - accounting for undesirable outputs: Analysis of China's thirty provincial regions using the Malmquist–Luenberger index," Ecological Economics, Elsevier, vol. 70(12), pages 2369-2379.
  25. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
  26. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
  27. Taylan G. Topcu & Konstantinos Triantis, 2022. "An ex-ante DEA method for representing contextual uncertainties and stakeholder risk preferences," Annals of Operations Research, Springer, vol. 309(1), pages 395-423, February.
  28. Kumar, Surender & Jain, Rakesh Kumar, 2019. "Carbon-sensitive meta-productivity growth and technological gap: An empirical analysis of Indian thermal power sector," Energy Economics, Elsevier, vol. 81(C), pages 104-116.
  29. Growitsch, Christian & Jamasb, Tooraj & Wetzel, Heike, 2012. "Efficiency effects of observed and unobserved heterogeneity: Evidence from Norwegian electricity distribution networks," Energy Economics, Elsevier, vol. 34(2), pages 542-548.
  30. Heesche, Emil & Asmild, Mette, 2022. "Incorporating quality in economic regulatory benchmarking," Omega, Elsevier, vol. 110(C).
  31. Gultom, Yohanna M.L., 2021. "When extractive political institutions affect public-private partnerships: Empirical evidence from Indonesia's independent power producers under two political regimes," Energy Policy, Elsevier, vol. 149(C).
  32. Huguenin, Jean-Marc, 2015. "Adjusting for the environment in DEA: A comparison of alternative models based on empirical data," Socio-Economic Planning Sciences, Elsevier, vol. 52(C), pages 41-54.
  33. Xian, Yujiao & Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2019. "Would China’s power industry benefit from nationwide carbon emission permit trading? An optimization model-based ex post analysis on abatement cost savings," Applied Energy, Elsevier, vol. 235(C), pages 978-986.
  34. Chui-Yu Chiu & William Tang, 2022. "Measuring the Operational Efficiency and the Water Resources Management Efficiency for Industrial Parks: Empirical Study of Industrial Parks in Taiwan," Sustainability, MDPI, vol. 14(21), pages 1-22, October.
  35. Ouyang, Xiaoling & Chen, Jiaqi & Du, Kerui, 2021. "Energy efficiency performance of the industrial sector: From the perspective of technological gap in different regions in China," Energy, Elsevier, vol. 214(C).
  36. Bai-Chen Xie & Jie Gao & Shuang Zhang & ZhongXiang Zhang, 2017. "What Factors Affect the Competiveness of Power Generation Sector in China? An Analysis Based on Game Cross-efficiency," Working Papers 2017.12, Fondazione Eni Enrico Mattei.
  37. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
  38. Cheng, Gang & Zervopoulos, Panagiotis D., 2014. "Estimating the technical efficiency of health care systems: A cross-country comparison using the directional distance function," European Journal of Operational Research, Elsevier, vol. 238(3), pages 899-910.
  39. Wei, Chu & Löschel, Andreas & Liu, Bing, 2015. "Energy-saving and emission-abatement potential of Chinese coal-fired power enterprise: A non-parametric analysis," Energy Economics, Elsevier, vol. 49(C), pages 33-43.
  40. Du, Juan & Chen, Yao & Huang, Ying, 2018. "A Modified Malmquist-Luenberger Productivity Index: Assessing Environmental Productivity Performance in China," European Journal of Operational Research, Elsevier, vol. 269(1), pages 171-187.
  41. Mika Goto & Toshiyuki Sueyoshi, 2020. "Sustainable development and corporate social responsibility in Japanese manufacturing companies," Sustainable Development, John Wiley & Sons, Ltd., vol. 28(4), pages 844-856, July.
  42. Xie, Bai-Chen & Shang, Li-Feng & Yang, Si-Bo & Yi, Bo-Wen, 2014. "Dynamic environmental efficiency evaluation of electric power industries: Evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countrie," Energy, Elsevier, vol. 74(C), pages 147-157.
  43. Simona Bigerna & Maria Chiara D’Errico & Paolo Polinori, 2022. "Sustainable Power Generation in Europe: A Panel Data Analysis of the Effects of Market and Environmental Regulations," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 83(2), pages 445-479, October.
  44. Xiaohong Liu & Qingyuan Zhu & Junfei Chu & Xiang Ji & Xingchen Li, 2019. "Environmental Performance and Benchmarking Information for Coal-Fired Power Plants in China: A DEA Approach," Computational Economics, Springer;Society for Computational Economics, vol. 54(4), pages 1287-1302, December.
  45. Ogunrinde, Olawale & Shittu, Ekundayo, 2023. "Efficiency and productivity of renewable energy technologies: Evidence from U.S. investor-owned utilities across regional markets," Utilities Policy, Elsevier, vol. 82(C).
  46. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
  47. Biener, Christian & Eling, Martin & Wirfs, Jan Hendrik, 2016. "The determinants of efficiency and productivity in the Swiss insurance industry," European Journal of Operational Research, Elsevier, vol. 248(2), pages 703-714.
  48. Massimo Filippini & Thomas Geissmann & William H. Greene, 2018. "Persistent and transient cost efficiency—an application to the Swiss hydropower sector," Journal of Productivity Analysis, Springer, vol. 49(1), pages 65-77, February.
  49. Vivek Ghosal & Andreas Stephan & Jan F. Weiss, 2019. "Decentralized environmental regulations and plant‐level productivity," Business Strategy and the Environment, Wiley Blackwell, vol. 28(6), pages 998-1011, September.
  50. Wang, Zhaohua & Li, Yi & Wang, Ke & Huang, Zhimin, 2017. "Environment-adjusted operational performance evaluation of solar photovoltaic power plants: A three stage efficiency analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1153-1162.
  51. Hashem Omrani & Meisam Shamsi & Ali Emrouznejad, 2023. "Evaluating sustainable efficiency of decision-making units considering undesirable outputs: an application to airline using integrated multi-objective DEA-TOPSIS," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 5899-5930, July.
  52. Han, Yongming & Geng, Zhiqiang & Zhu, Qunxiong & Qu, Yixin, 2015. "Energy efficiency analysis method based on fuzzy DEA cross-model for ethylene production systems in chemical industry," Energy, Elsevier, vol. 83(C), pages 685-695.
  53. Michael L. Polemis & Mike G. Tsionas, 2022. "Endogenous productivity: a new Bayesian perspective," Annals of Operations Research, Springer, vol. 318(1), pages 425-451, November.
  54. Wang, Ke & Zhang, Xian & Yu, Xueying & Wei, Yi-Ming & Wang, Bin, 2016. "Emissions trading and abatement cost savings: An estimation of China's thermal power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1005-1017.
  55. Alexandre MARINHO & Marcelo RESENDE, 2019. "Service Quality In Electricity Distribution In Brazil: A Malmquist Approach," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 90(4), pages 687-712, December.
  56. Hongliang Yang & Michael Pollitt, 2007. "Incorporating Undesirable Outputs into Malmquist TFP Index: Environmental Performance Growth of Chinese Coal-Fired Power Plants," Working Papers EPRG 0716, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  57. Chen, Bin & Jin, Yingmei, 2020. "Adjusting productivity measures for CO2 emissions control: Evidence from the provincial thermal power sector in China," Energy Economics, Elsevier, vol. 87(C).
  58. M. A. Samad Azad & Tihomir Ancev, 2016. "Economics of Salinity Effects from Irrigated Cotton: An Efficiency Analysis," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(01), pages 1-24, March.
  59. Yunfei An & Dequn Zhou & Qunwei Wang, 2022. "Carbon emission reduction potential and its influencing factors in China’s coal-fired power industry: a cost optimization and decomposition analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 3619-3639, March.
  60. Mushtaq Taleb & Ruzelan Khalid & Ali Emrouznejad & Razamin Ramli, 2023. "Environmental efficiency under weak disposability: an improved super efficiency data envelopment analysis model with application for assessment of port operations considering NetZero," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6627-6656, July.
  61. Hu, Jin-Li & Lio, Mon-Chi & Yeh, Fang-Yu & Lin, Cheng-Hsun, 2011. "Environment-adjusted regional energy efficiency in Taiwan," Applied Energy, Elsevier, vol. 88(8), pages 2893-2899, August.
  62. Zhang, Ning & Jiang, Xue-Feng, 2019. "The effect of environmental policy on Chinese firm's green productivity and shadow price: A metafrontier input distance function approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 129-136.
  63. Du, Minzhe & Liu, Yunxiao & Wang, Bing & Lee, Myunghun & Zhang, Ning, 2021. "The sources of regulated productivity in Chinese power plants: An estimation of the restricted cost function combined with DEA approach," Energy Economics, Elsevier, vol. 100(C).
  64. Du, Limin & Hanley, Aoife & Zhang, Ning, 2016. "Environmental technical efficiency, technology gap and shadow price of coal-fuelled power plants in China: A parametric meta-frontier analysis," Resource and Energy Economics, Elsevier, vol. 43(C), pages 14-32.
  65. Czyżewski, Bazyli & Kryszak, Łukasz, 2023. "Can a pursuit of productivity be reconciled with sustainable practices in small-scale farming? – Evidence from central and eastern Europe," MPRA Paper 117642, University Library of Munich, Germany, revised 31 May 2023.
  66. Mahlberg, Bernhard & Sahoo, Biresh K., 2011. "Radial and non-radial decompositions of Luenberger productivity indicator with an illustrative application," International Journal of Production Economics, Elsevier, vol. 131(2), pages 721-726, June.
  67. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
  68. Cordero, José Manuel & Alonso-Morán, Edurne & Nuño-Solinis, Roberto & Orueta, Juan F. & Arce, Regina Sauto, 2015. "Efficiency assessment of primary care providers: A conditional nonparametric approach," European Journal of Operational Research, Elsevier, vol. 240(1), pages 235-244.
  69. Mou, Dunguo, 2014. "Understanding China’s electricity market reform from the perspective of the coal-fired power disparity," Energy Policy, Elsevier, vol. 74(C), pages 224-234.
  70. Karim L. Anaya & Michael G. Pollitt, 2014. "Does Weather Have an Impact on Electricity Distribution Efficiency? Evidence from South America," Cambridge Working Papers in Economics 1424, Faculty of Economics, University of Cambridge.
  71. Barros, Carlos Pestana & Wanke, Peter, 2017. "Efficiency in Angolan thermal power plants: Evidence from cost structure and pollutant emissions," Energy, Elsevier, vol. 130(C), pages 129-143.
  72. Nina Sakinah Ahmad Rofaie & Seuk Wai Phoong & Muzalwana Abdul Talib @ Abdul Mutalib, 2022. "Light-Emitting Diode (LED) versus High-Pressure Sodium Vapour (HPSV) Efficiency: A Data Envelopment Analysis Approach with Undesirable Output," Energies, MDPI, vol. 15(13), pages 1-21, June.
  73. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
  74. Chiu, Yung-Ho & Lee, Jen-Hui & Lu, Ching-Cheng & Shyu, Ming-Kuang & Luo, Zhengying, 2012. "The technology gap and efficiency measure in WEC countries: Application of the hybrid meta frontier model," Energy Policy, Elsevier, vol. 51(C), pages 349-357.
  75. Hang Xiong, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," CERDI Working papers halshs-00672450, HAL.
  76. Ling, Yantao & Xia, Senmao & Cao, Mengqiu & He, Kerun & Lim, Ming K. & Sukumar, Arun & Yi, Huiyong & Qian, Xiaoduo, 2021. "Carbon emissions in China's thermal electricity and heating industry: an input-output structural decomposition analysis," LSE Research Online Documents on Economics 112930, London School of Economics and Political Science, LSE Library.
  77. Wu, Jie & Zhu, Qingyuan & Ji, Xiang & Chu, Junfei & Liang, Liang, 2016. "Two-stage network processes with shared resources and resources recovered from undesirable outputs," European Journal of Operational Research, Elsevier, vol. 251(1), pages 182-197.
  78. William Yu & Tooraj Jamasb & Michael Pollitt, 2008. "Does Weather Explain the Cost and Quality? An Analysis of UK Electricity Distribution Companies," Working Papers EPRG 0827, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  79. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
  80. Anyu Yu & Guangshe Jia & Jianxin You & Puwei Zhang, 2018. "Estimation of PM 2.5 Concentration Efficiency and Potential Public Mortality Reduction in Urban China," IJERPH, MDPI, vol. 15(3), pages 1-19, March.
  81. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
  82. Konstantinos Petridis, 2022. "Spatio-temporal efficiency measurement under undesirable outputs using multi-objective programming: a GAMS representation," Annals of Operations Research, Springer, vol. 311(2), pages 1183-1202, April.
  83. Mahlberg, Bernhard & Luptacik, Mikulas & Sahoo, Biresh K., 2011. "Examining the drivers of total factor productivity change with an illustrative example of 14 EU countries," Ecological Economics, Elsevier, vol. 72(C), pages 60-69.
  84. Vladimír Holý, 2022. "The impact of operating environment on efficiency of public libraries," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(1), pages 395-414, March.
  85. Nistor Cristina Silvia & Ștefănescu Cristina Alexandrina & Crișan Andrei-Răzvan, 2017. "Performance Through Efficiency in the Public Healthcare System – A DEA Approach in an Emergent Country," Studia Universitatis Babeș-Bolyai Oeconomica, Sciendo, vol. 62(1), pages 31-49, April.
  86. Ali Shaddady, 2022. "Business environment, political risk, governance, Shariah compliance and efficiency in insurance companies in the MENA region," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(4), pages 861-904, October.
  87. Ather Hassan Dar & Somesh Kumar Mathur & Sila Mishra, 2021. "The Efficiency of Indian Banks: A DEA, Malmquist and SFA Analysis with Bad Output," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 19(4), pages 653-701, December.
  88. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
  89. Ephraim Clark & Zhuo Qiao, 2022. "Stock exchange efficiency and convergence: international evidence," Annals of Operations Research, Springer, vol. 313(2), pages 855-875, June.
  90. Rico Merkert & Andrew S.J. Smith & Chris A. Nash, 2009. "Benchmarking of train operating firms -- a transaction cost efficiency analysis," Transportation Planning and Technology, Taylor & Francis Journals, vol. 33(1), pages 35-53, October.
  91. Yang, Hongliang & Pollitt, Michael, 2010. "The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: Environmental performance of Chinese coal-fired power plants," Energy Policy, Elsevier, vol. 38(8), pages 4440-4444, August.
  92. Seifert, Stefan & Cullmann, Astrid & von Hirschhausen, Christian, 2016. "Technical efficiency and CO2 reduction potentials — An analysis of the German electricity and heat generating sector," Energy Economics, Elsevier, vol. 56(C), pages 9-19.
  93. Jian Chai & Wenyue Fan & Jing Han, 2019. "Does the Energy Efficiency of Power Companies Affect Their Industry Status? A DEA Analysis of Listed Companies in Thermal Power Sector," Sustainability, MDPI, vol. 12(1), pages 1-12, December.
  94. Roshdi, Israfil & Hasannasab, Maryam & Margaritis, Dimitris & Rouse, Paul, 2018. "Generalised weak disposability and efficiency measurement in environmental technologies," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1000-1012.
  95. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Mahanty, Biswajit, 2018. "Examining the process of normalising the energy-efficiency targets for coal-based thermal power sector in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 342-352.
  96. Xiang Liu & Jia Liu, 2016. "Measurement of Low Carbon Economy Efficiency with a Three-Stage Data Envelopment Analysis: A Comparison of the Largest Twenty CO 2 Emitting Countries," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
  97. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
  98. Wang, Zhaohua & He, Weijun & Wang, Bo, 2017. "Performance and reduction potential of energy and CO2 emissions among the APEC's members with considering the return to scale," Energy, Elsevier, vol. 138(C), pages 552-562.
  99. Guo, Xiaoying & Lu, Ching-Cheng & Lee, Jen-Hui & Chiu, Yung-Ho, 2017. "Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China," Energy, Elsevier, vol. 134(C), pages 392-399.
  100. Biswaranjita Mahapatra & Chandan Bhar & Sandeep Mondal, 2020. "Performance Assessment Based on the Relative Efficiency of Indian Opencast Coal Mines Using Data Envelopment Analysis and Malmquist Productivity Index," Energies, MDPI, vol. 13(18), pages 1-21, September.
  101. Ching-Cheng Lu & Liang-Chun Lu, 2019. "Evaluating the energy efficiency of European Union countries: The dynamic data envelopment analysis," Energy & Environment, , vol. 30(1), pages 27-43, February.
  102. Evgenii Monastyrenko, 2016. "Cross-Border M&As and Eco-Environmental Performance of European Energy Utilities," FIW Working Paper series 169, FIW.
  103. Pyoungsoo Lee & You-Jin Park, 2017. "Eco-Efficiency Evaluation Considering Environmental Stringency," Sustainability, MDPI, vol. 9(4), pages 1-18, April.
  104. Li, Ming-Jia & Tao, Wen-Quan, 2017. "Review of methodologies and polices for evaluation of energy efficiency in high energy-consuming industry," Applied Energy, Elsevier, vol. 187(C), pages 203-215.
  105. Chen, Zhongfei & Barros, Carlos Pestana & Borges, Maria Rosa, 2015. "A Bayesian stochastic frontier analysis of Chinese fossil-fuel electricity generation companies," Energy Economics, Elsevier, vol. 48(C), pages 136-144.
  106. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
  107. Yu, William & Jamasb, Tooraj & Pollitt, Michael, 2009. "Does weather explain cost and quality performance? An analysis of UK electricity distribution companies," Energy Policy, Elsevier, vol. 37(11), pages 4177-4188, November.
  108. Fazıl Gökgöz & Ercem Erkul, 2014. "Energy Efficiency Analysis For The European Countries," Economy & Business Journal, International Scientific Publications, Bulgaria, vol. 8(1), pages 124-140.
  109. Ioannis E. Tsolas, 2023. "Efficiency Measurement of Lignite-Fired Power Plants in Greece Using a DEA-Bootstrap Approach," Sustainability, MDPI, vol. 15(4), pages 1-10, February.
  110. Zeng, Shihong & Jiang, Chunxia & Ma, Chen & Su, Bin, 2018. "Investment efficiency of the new energy industry in China," Energy Economics, Elsevier, vol. 70(C), pages 536-544.
  111. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
  112. Mahlberg, Bernhard & Luptacik, Mikulas, 2014. "Eco-efficiency and eco-productivity change over time in a multisectoral economic system," European Journal of Operational Research, Elsevier, vol. 234(3), pages 885-897.
  113. G. Thomas Sav, 2013. "Effects of Financial Source Dependency on Public University Operating Efficiencies: Data Envelopment Single-Stage and Tobit Two-Stage Evaluations," Review of Economics & Finance, Better Advances Press, Canada, vol. 3, pages 63-73, February.
  114. Dan Wu & Ching-Cheng Lu & Xiang Chen & Pei-Chieh Tu & An-Chi Yang & Chih-Yu Yang, 2021. "Evaluating the Dynamic Energy Production Efficiency in APEC Economies," Energies, MDPI, vol. 14(14), pages 1-20, July.
  115. Huang, Wei & Eling, Martin, 2013. "An efficiency comparison of the non-life insurance industry in the BRIC countries," European Journal of Operational Research, Elsevier, vol. 226(3), pages 577-591.
  116. Zhang, Maolong & Xu, Chao & Du, Xiaoze & Amjad, Muhammad & Wen, Dongsheng, 2017. "Off-design performance of concentrated solar heat and coal double-source boiler power generation with thermocline energy storage," Applied Energy, Elsevier, vol. 189(C), pages 697-710.
  117. Anaya, Karim L. & Pollitt, Michael G., 2017. "Using stochastic frontier analysis to measure the impact of weather on the efficiency of electricity distribution businesses in developing economies," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1078-1094.
  118. Beltrán-Esteve, Mercedes & Picazo-Tadeo, Andrés J., 2017. "Assessing environmental performance in the European Union: Eco-innovation versus catching-up," Energy Policy, Elsevier, vol. 104(C), pages 240-252.
  119. Skevas, Theodoros & Stefanou, Spiro E. & Oude Lansink, Alfons, 2014. "Pesticide use, environmental spillovers and efficiency: A DEA risk-adjusted efficiency approach applied to Dutch arable farming," European Journal of Operational Research, Elsevier, vol. 237(2), pages 658-664.
  120. Mahdiloo, Mahdi & Saen, Reza Farzipoor & Lee, Ki-Hoon, 2015. "Technical, environmental and eco-efficiency measurement for supplier selection: An extension and application of data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 168(C), pages 279-289.
  121. Yung-Hsiang Lu & Ku-Hsieh Chen & Jen-Chi Cheng & Chih-Chun Chen & Sian-Yuan Li, 2019. "Analysis of Environmental Productivity on Fossil Fuel Power Plants in the U.S," Sustainability, MDPI, vol. 11(24), pages 1-27, December.
  122. Hang Xiong, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," Working Papers halshs-00672450, HAL.
  123. Hang XIONG, 2012. "Effects of One-Sided Fiscal Decentralization on Environmental Efficiency of Chinese Provinces," Working Papers 201208, CERDI.
  124. Wang, H. & Zhou, P. & Xie, Bai-Chen & Zhang, N., 2019. "Assessing drivers of CO2 emissions in China's electricity sector: A metafrontier production-theoretical decomposition analysis," European Journal of Operational Research, Elsevier, vol. 275(3), pages 1096-1107.
  125. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2017. "Environmental efficiency and abatement efficiency measurements of China¡¯s thermal power industry: A data envelopment analysis based materials balance approach," CEEP-BIT Working Papers 108, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  126. M. Lábaj & M. Luptáčik & E. Nežinský, 2014. "Data envelopment analysis for measuring economic growth in terms of welfare beyond GDP," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 41(3), pages 407-424, August.
  127. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
  128. Zhao, Xiaoli & Ma, Chunbo, 2013. "Deregulation, vertical unbundling and the performance of China's large coal-fired power plants," Energy Economics, Elsevier, vol. 40(C), pages 474-483.
  129. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
  130. Arabi, Behrouz & Munisamy, Susila & Emrouznejad, Ali & Shadman, Foroogh, 2014. "Power industry restructuring and eco-efficiency changes: A new slacks-based model in Malmquist–Luenberger Index measurement," Energy Policy, Elsevier, vol. 68(C), pages 132-145.
  131. Li, Gao & Ruonan, Li & Yingdan, Mei & Xiaoli, Zhao, 2022. "Improve technical efficiency of China's coal-fired power enterprises: Taking a coal-fired-withdrawl context," Energy, Elsevier, vol. 252(C).
  132. Halkos, George & Petrou, Kleoniki Natalia, 2019. "Treating undesirable outputs in DEA: A critical review," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 97-104.
  133. Podinovski, Victor V. & Bouzdine-Chameeva, Tatiana, 2011. "The impossibility of convex constant returns-to-scale production technologies with exogenously fixed factors," European Journal of Operational Research, Elsevier, vol. 213(1), pages 119-123, August.
  134. Corrado Lo Storto, 2016. "Ecological Efficiency Based Ranking of Cities: A Combined DEA Cross-Efficiency and Shannon’s Entropy Method," Sustainability, MDPI, vol. 8(2), pages 1-29, January.
  135. Zhou, Yan & Xing, Xinpeng & Fang, Kuangnan & Liang, Dapeng & Xu, Chunlin, 2013. "Environmental efficiency analysis of power industry in China based on an entropy SBM model," Energy Policy, Elsevier, vol. 57(C), pages 68-75.
  136. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
  137. Chang, Dong-Shang & Liu, Wenrong & Yeh, Li-Ting, 2013. "Incorporating the learning effect into data envelopment analysis to measure MSW recycling performance," European Journal of Operational Research, Elsevier, vol. 229(2), pages 496-504.
  138. José Manuel Cordero & Cristina Polo & Daniel Santín & Gabriela Sicilia, 2016. "Monte-Carlo Comparison of Conditional Nonparametric Methods and Traditional Approaches to Include Exogenous Variables," Pacific Economic Review, Wiley Blackwell, vol. 21(4), pages 483-497, October.
  139. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry," European Journal of Operational Research, Elsevier, vol. 216(3), pages 668-678.
  140. Shih-Heng Yu, 2019. "Benchmarking and Performance Evaluation Towards the Sustainable Development of Regions in Taiwan: A Minimum Distance-Based Measure with Undesirable Outputs in Additive DEA," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 144(3), pages 1323-1348, August.
  141. Yongzhong Jiang & Xueli Chen & Vivian Valdmanis & Tomas Baležentis, 2019. "Evaluating Economic and Environmental Performance of the Chinese Industry Sector," Sustainability, MDPI, vol. 11(23), pages 1-17, November.
  142. Subhash C. Ray & Shilpa Sethia, 2023. "A State-Level Resource Allocation Model for Emission Reduction and Efficiency Improvement in Thermal Power Plants," Working papers 2023-08, University of Connecticut, Department of Economics.
  143. Yujiao Xian & Ke Wang & Yi-Ming Wei & Zhimin Huang, 2018. "Would China¡¯s power industry benefit from nationwide carbon emission permit trading? An optimization model-based ex post analysis on abatement cost savings," CEEP-BIT Working Papers 121, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  144. Haney, Aoife Brophy & Pollitt, Michael G., 2013. "International benchmarking of electricity transmission by regulators: A contrast between theory and practice?," Energy Policy, Elsevier, vol. 62(C), pages 267-281.
  145. Pompei, Fabrizio, 2013. "Heterogeneous effects of regulation on the efficiency of the electricity industry across European Union countries," Energy Economics, Elsevier, vol. 40(C), pages 569-585.
  146. Biener, Christian & Eling, Martin, 2012. "Organization and efficiency in the international insurance industry: A cross-frontier analysis," European Journal of Operational Research, Elsevier, vol. 221(2), pages 454-468.
  147. Lu, Ching-Cheng & Chiu, Yung-Ho & Shyu, Ming-Kuang & Lee, Jen-Hui, 2013. "Measuring CO2 emission efficiency in OECD countries: Application of the Hybrid Efficiency model," Economic Modelling, Elsevier, vol. 32(C), pages 130-135.
  148. Schaper, Philipp, 2017. "Under pressure: how the business environment affects productivity and efficiency of European life insurance companiesAuthor-Name: Eling, Martin," European Journal of Operational Research, Elsevier, vol. 258(3), pages 1082-1094.
  149. Pyoungsoo Lee, 2022. "Ranking Decision Making for Eco-Efficiency Using Operational, Energy, and Environmental Efficiency," Sustainability, MDPI, vol. 14(6), pages 1-18, March.
  150. Halkos, George & Petrou, Kleoniki Natalia, 2018. "A critical review of the main methods to treat undesirable outputs in DEA," MPRA Paper 90374, University Library of Munich, Germany.
  151. Nakaishi, Tomoaki & Takayabu, Hirotaka & Eguchi, Shogo, 2021. "Environmental efficiency analysis of China's coal-fired power plants considering heterogeneity in power generation company groups," Energy Economics, Elsevier, vol. 102(C).
  152. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
  153. Xie, Bai-Chen & Gao, Jie & Zhang, Shuang & Pang, Rui-Zhi & Zhang, ZhongXiang, 2018. "The environmental efficiency analysis of China’s power generation sector based on game cross-efficiency approach," Structural Change and Economic Dynamics, Elsevier, vol. 46(C), pages 126-135.
  154. Hampf, Benjamin & Rødseth, Kenneth Løvold, 2019. "Environmental efficiency measurement with heterogeneous input quality: A nonparametric analysis of U.S. power plants," Energy Economics, Elsevier, vol. 81(C), pages 610-625.
  155. Cheng, Gang & Zervopoulos, Panagiotis, 2012. "A generalized directional distance function in data envelopment analysis and its application to a cross-country measurement of health efficiency," MPRA Paper 42068, University Library of Munich, Germany.
  156. Nillesen, P.H.L., 2008. "The future of electricity distribution regulation : Lessons from international experience," Other publications TiSEM e80aca08-4ccd-4b06-99c0-3, Tilburg University, School of Economics and Management.
  157. Qingxian An & Xiangyang Tao & Bo Dai & Jinlin Li, 2020. "Modified Distance Friction Minimization Model with Undesirable Output: An Application to the Environmental Efficiency of China’s Regional Industry," Computational Economics, Springer;Society for Computational Economics, vol. 55(4), pages 1047-1071, April.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.