IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i3p529-d136530.html
   My bibliography  Save this article

Estimation of PM 2.5 Concentration Efficiency and Potential Public Mortality Reduction in Urban China

Author

Listed:
  • Anyu Yu

    (School of Economics and Management, Tongji University, Siping Road 1500, Shanghai 200092, China)

  • Guangshe Jia

    (School of Economics and Management, Tongji University, Siping Road 1500, Shanghai 200092, China)

  • Jianxin You

    (School of Economics and Management, Tongji University, Siping Road 1500, Shanghai 200092, China)

  • Puwei Zhang

    (School of Economics and Management, Tongji University, Siping Road 1500, Shanghai 200092, China)

Abstract

The particulate matter 2.5 (PM 2.5 ) is a serious air-pollutant emission in China, which has caused serious risks to public health. To reduce the pollution and corresponding public mortality, this paper proposes a method by incorporating slacks-based data envelopment analysis (DEA) and an integrated exposure risk (IER) model. By identifying the relationship between the PM 2.5 concentration and mortality, the potential PM 2.5 concentration efficiency and mortality reduction were measured. The proposed method has been applied to China’s 243 cities in 2015. Some implications are achieved. (1) There are urban disparities in estimated results around China. The geographic distribution of urban mortality reduction is consistent with that of the PM 2.5 concentration efficiency, but some inconsistency also exists. (2) The pollution reduction and public health improvement should be addressed among China’s cities, especially for those in northern coastal, eastern coastal, and middle Yellow River areas. The reduction experience of PM 2.5 concentration in cities of the southern coastal area could be advocated in China. (3) Environmental consideration should be part of the production adjustment of urban central China. The updating of technology is suggested for specific cities and should be considered by the policymaker.

Suggested Citation

  • Anyu Yu & Guangshe Jia & Jianxin You & Puwei Zhang, 2018. "Estimation of PM 2.5 Concentration Efficiency and Potential Public Mortality Reduction in Urban China," IJERPH, MDPI, vol. 15(3), pages 1-19, March.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:3:p:529-:d:136530
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/3/529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/3/529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William W. Cooper & Lawrence M. Seiford & Joe Zhu (ed.), 2011. "Handbook on Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-1-4419-6151-8, September.
    2. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2016. "Potential gains from carbon emissions trading in China: A DEA based estimation on abatement cost savings," Omega, Elsevier, vol. 63(C), pages 48-59.
    3. Ramli, Noor Asiah & Munisamy, Susila, 2015. "Eco-efficiency in greenhouse emissions among manufacturing industries: A range adjusted measure," Economic Modelling, Elsevier, vol. 47(C), pages 219-227.
    4. Halkos, George Emm. & Tzeremes, Nickolaos G., 2009. "Exploring the existence of Kuznets curve in countries' environmental efficiency using DEA window analysis," Ecological Economics, Elsevier, vol. 68(7), pages 2168-2176, May.
    5. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    6. Chang, Young-Tae & Zhang, Ning & Danao, Denise & Zhang, Nan, 2013. "Environmental efficiency analysis of transportation system in China: A non-radial DEA approach," Energy Policy, Elsevier, vol. 58(C), pages 277-283.
    7. Sueyoshi, Toshiyuki & Yuan, Yan, 2016. "Marginal Rate of Transformation and Rate of Substitution measured by DEA environmental assessment: Comparison among European and North American nations," Energy Economics, Elsevier, vol. 56(C), pages 270-287.
    8. Wang, Jian & Lv, Kangjuan & Bian, Yiwen & Cheng, Yu, 2017. "Energy efficiency and marginal carbon dioxide emission abatement cost in urban China," Energy Policy, Elsevier, vol. 105(C), pages 246-255.
    9. Bian, Yiwen & Yang, Feng, 2010. "Resource and environment efficiency analysis of provinces in China: A DEA approach based on Shannon's entropy," Energy Policy, Elsevier, vol. 38(4), pages 1909-1917, April.
    10. Valadkhani, Abbas & Roshdi, Israfil & Smyth, Russell, 2016. "A multiplicative environmental DEA approach to measure efficiency changes in the world's major polluters," Energy Economics, Elsevier, vol. 54(C), pages 363-375.
    11. Hu, Jin-Li & Wang, Shih-Chuan, 2006. "Total-factor energy efficiency of regions in China," Energy Policy, Elsevier, vol. 34(17), pages 3206-3217, November.
    12. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    13. Zhijian Liu & Hao Li & Guoqing Cao, 2017. "Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning," IJERPH, MDPI, vol. 14(8), pages 1-9, July.
    14. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    15. J. Lelieveld & J. S. Evans & M. Fnais & D. Giannadaki & A. Pozzer, 2015. "The contribution of outdoor air pollution sources to premature mortality on a global scale," Nature, Nature, vol. 525(7569), pages 367-371, September.
    16. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Alan, 2022. "Air pollution and mediation effects in stock market, longitudinal evidence from China," International Review of Financial Analysis, Elsevier, vol. 83(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shichun Xu & Yiwen Li & Yuan Tao & Yan Wang & Yunfan Li, 2020. "Regional Differences in the Spatial Characteristics and Dynamic Convergence of Environmental Efficiency in China," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    2. Yu, Anyu & Zhang, Puwei & Rudkin, Simon, 2022. "Simultaneous action or protection after production? Decision making based on a chance-constrained approach by measuring environmental performance considering PM2.5," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    3. Yu, Anyu & You, Jianxin & Rudkin, Simon & Zhang, Hao, 2019. "Industrial carbon abatement allocations and regional collaboration: Re-evaluating China through a modified data envelopment analysis," Applied Energy, Elsevier, vol. 233, pages 232-243.
    4. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    5. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    6. Ning Zhang & Fanbin Kong & Chih-Chun Kung, 2015. "On Modeling Environmental Production Characteristics: A Slacks-Based Measure for China’s Poyang Lake Ecological Economics Zone," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 389-404, October.
    7. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    8. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    9. Cheng, Zhonghua & Liu, Jun & Li, Lianshui & Gu, Xinbei, 2020. "Research on meta-frontier total-factor energy efficiency and its spatial convergence in Chinese provinces," Energy Economics, Elsevier, vol. 86(C).
    10. Xiaoyang Zhou & Hao Chen & Hao Wang & Benjamin Lev & Lifang Quan, 2019. "Natural and Managerial Disposability Based DEA Model for China’s Regional Environmental Efficiency Assessment," Energies, MDPI, vol. 12(18), pages 1-20, September.
    11. Du, Huibin & Matisoff, Daniel C. & Wang, Yangyang & Liu, Xi, 2016. "Understanding drivers of energy efficiency changes in China," Applied Energy, Elsevier, vol. 184(C), pages 1196-1206.
    12. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    13. Jiang, Lei & Zhou, Haifeng & He, Shixiong, 2021. "Does energy efficiency increase at the expense of output performance: Evidence from manufacturing firms in Jiangsu province, China," Energy, Elsevier, vol. 220(C).
    14. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
    15. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    16. Kangjuan Lv & Anyu Yu & Yiwen Bian, 2017. "Regional energy efficiency and its determinants in China during 2001–2010: a slacks-based measure and spatial econometric analysis," Journal of Productivity Analysis, Springer, vol. 47(1), pages 65-81, February.
    17. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    18. Yongrok Choi & Hyoungsuk Lee & Hojin Jeong & Jahira Debbarma, 2023. "Urbanization Paradox of Environmental Policies in Korean Local Governments," Land, MDPI, vol. 12(2), pages 1-15, February.
    19. Chen, Zhenling & Yuan, Xiao-Chen & Zhang, Xiaoling & Cao, Yunfei, 2020. "How will the Chinese national carbon emissions trading scheme work? The assessment of regional potential gains," Energy Policy, Elsevier, vol. 137(C).
    20. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:3:p:529-:d:136530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.