IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7290-d1268611.html
   My bibliography  Save this article

Effects of Vertical Unbundling on the Operational and Environmental Efficiency of Chinese Thermal Power Firms

Author

Listed:
  • Renjie Yu

    (Institute of Western China Economic Research, Southwestern University of Finance and Economics, 555 Liutai Avenue, Chengdu 611130, China)

  • Peng Yuan

    (Institute of Western China Economic Research, Southwestern University of Finance and Economics, 555 Liutai Avenue, Chengdu 611130, China)

  • Fandi Yang

    (Institute of Western China Economic Research, Southwestern University of Finance and Economics, 555 Liutai Avenue, Chengdu 611130, China)

  • Gongxiong Jiang

    (Institute of Western China Economic Research, Southwestern University of Finance and Economics, 555 Liutai Avenue, Chengdu 611130, China)

Abstract

Since the 1980s, many electricity markets around the world have undergone restructuring aimed at improving efficiency. In 2002, the Chinese government also introduced a vertical unbundling reform to dismantle vertical monopolies and boost efficiency in the power sector. This study estimates the unified, operational, and environmental efficiency to comprehensively assess the impact of China’s vertical unbundling on the production performance of thermal power firms. A non-radial data envelopment analysis (DEA) approach is employed to measure these efficiencies. Subsequently, a difference-in-difference model is used to assess the reform’s effects. Empirical results show that the vertical unbundling improved the unified efficiency of firms. Further analysis indicates that the reform improved the operational efficiency of firms by increasing their capacity utilization and coal quality. Additionally, we find that the reform led to an increased utilization of source control technologies but resulted in a reduction in the use of end-of-pipe treatments. Due to the opposing effects on different pollution treatment stages, the reform did not have a significant impact on environmental efficiency.

Suggested Citation

  • Renjie Yu & Peng Yuan & Fandi Yang & Gongxiong Jiang, 2023. "Effects of Vertical Unbundling on the Operational and Environmental Efficiency of Chinese Thermal Power Firms," Energies, MDPI, vol. 16(21), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7290-:d:1268611
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7290/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7290/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. Dean Hiebert, 2002. "The Determinants of the Cost Efficiency of Electric Generating Plants: A Stochastic Frontier Approach," Southern Economic Journal, John Wiley & Sons, vol. 68(4), pages 935-946, April.
    2. Yin-Fang Zhang & David Parker & Colin Kirkpatrick, 2008. "Electricity sector reform in developing countries: an econometric assessment of the effects of privatization, competition and regulation," Journal of Regulatory Economics, Springer, vol. 33(2), pages 159-178, April.
    3. Farber, Stephen C & Martin, Robert E, 1986. "Market Structure and Pollution Control under Imperfect Surveillance," Journal of Industrial Economics, Wiley Blackwell, vol. 35(2), pages 147-160, December.
    4. Michael L. Polemis & Thanasis Stengos, 2019. "Does competition prevent industrial pollution? Evidence from a panel threshold model," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 98-110, January.
    5. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    6. Andrei Shleifer, 2004. "Does Competition Destroy Ethical Behavior?," American Economic Review, American Economic Association, vol. 94(2), pages 414-418, May.
    7. Simon, Daniel H. & Prince, Jeffrey T., 2016. "The effect of competition on toxic pollution releases," Journal of Environmental Economics and Management, Elsevier, vol. 79(C), pages 40-54.
    8. Lawrence A. Plummer & Zoltán J. Ács, 2015. "Localized competition in the knowledge spillover theory of entrepreneurship," Chapters, in: Global Entrepreneurship, Institutions and Incentives, chapter 8, pages 145-160, Edward Elgar Publishing.
    9. Kira R. Fabrizio & Nancy L. Rose & Catherine D. Wolfram, 2007. "Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on US Electric Generation Efficiency," American Economic Review, American Economic Association, vol. 97(4), pages 1250-1277, September.
    10. Zhou, Yan & Xing, Xinpeng & Fang, Kuangnan & Liang, Dapeng & Xu, Chunlin, 2013. "Environmental efficiency analysis of power industry in China based on an entropy SBM model," Energy Policy, Elsevier, vol. 57(C), pages 68-75.
    11. David M. Newbery & Michael G. Pollitt, 1997. "The Restructuring and Privatisation of Britain's CEGB—Was It Worth It?," Journal of Industrial Economics, Wiley Blackwell, vol. 45(3), pages 269-303, September.
    12. Petra Moser & Alessandra Voena, 2012. "Compulsory Licensing: Evidence from the Trading with the Enemy Act," American Economic Review, American Economic Association, vol. 102(1), pages 396-427, February.
    13. McDonald, John, 2009. "Using least squares and tobit in second stage DEA efficiency analyses," European Journal of Operational Research, Elsevier, vol. 197(2), pages 792-798, September.
    14. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    15. Jamil, Muhammad Hamza & Ullah, Kafait & Saleem, Noor & Abbas, Faisal & Khalid, Hassan Abdullah, 2022. "Did the restructuring of the electricity generation sector increase social welfare in Pakistan?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    16. L. Dean Hiebert, 2002. "The Determinants of the Cost Efficiency of Electric Generating Plants: A Stochastic Frontier Approach," Southern Economic Journal, John Wiley & Sons, vol. 68(4), pages 935-946, April.
    17. Zhang, Ning & Jiang, Xue-Feng, 2019. "The effect of environmental policy on Chinese firm's green productivity and shadow price: A metafrontier input distance function approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 129-136.
    18. Wang, Chang & Guo, Yue & Yang, Yu & Chen, Shiyi, 2022. "The environmental benefits of electricity industry restructuring in China: Ownership mixing vs. vertical unbundling," Energy Economics, Elsevier, vol. 115(C).
    19. Jean-Jacques Laffont & Jean Tirole, 1993. "A Theory of Incentives in Procurement and Regulation," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262121743, December.
    20. Kabir Malik, Maureen Cropper, Alexander Limonov and Anoop Singh, 2015. "The Impact of Electricity Sector Restructuring on Coal-fired Power Plants in India," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    21. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    22. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Ning & Kong, Fanbin & Choi, Yongrok & Zhou, P., 2014. "The effect of size-control policy on unified energy and carbon efficiency for Chinese fossil fuel power plants," Energy Policy, Elsevier, vol. 70(C), pages 193-200.
    2. Song, Malin & Wang, Jianlin, 2018. "Environmental efficiency evaluation of thermal power generation in China based on a slack-based endogenous directional distance function model," Energy, Elsevier, vol. 161(C), pages 325-336.
    3. Zhao, Xiaoli & Ma, Chunbo, 2013. "Deregulation, vertical unbundling and the performance of China's large coal-fired power plants," Energy Economics, Elsevier, vol. 40(C), pages 474-483.
    4. Hang Gao & Johannes Van Biesebroeck, 2014. "Effects of Deregulation and Vertical Unbundling on the Performance of China's Electricity Generation Sector," Journal of Industrial Economics, Wiley Blackwell, vol. 62(1), pages 41-76, March.
    5. Michael L. Polemis & Thanasis Stengos, 2019. "Does competition prevent industrial pollution? Evidence from a panel threshold model," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 98-110, January.
    6. Mou, Dunguo, 2014. "Understanding China’s electricity market reform from the perspective of the coal-fired power disparity," Energy Policy, Elsevier, vol. 74(C), pages 224-234.
    7. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    8. Zhang, Ning & Zhou, P. & Choi, Yongrok, 2013. "Energy efficiency, CO2 emission performance and technology gaps in fossil fuel electricity generation in Korea: A meta-frontier non-radial directional distance functionanalysis," Energy Policy, Elsevier, vol. 56(C), pages 653-662.
    9. rukai, gong, 2014. "市场化改革促进了电力行业的增长吗? [Electricity Sector Reform in China:an Econometric Assessment of the Effects of Competition, Ownership and Regulation]," MPRA Paper 56818, University Library of Munich, Germany.
    10. Zhang, Yijun & Song, Yi, 2020. "Unified efficiency of coal mining enterprises in China: An analysis based on meta-frontier non-radial directional distance functions," Resources Policy, Elsevier, vol. 65(C).
    11. Sugathan, Anish & Malghan, Deepak & Chandrashekar, S. & Sinha, Deepak K., 2019. "Downstream electric utility restructuring and upstream generation efficiency: Productivity dynamics of Indian coal and gas based electricity generators," Energy, Elsevier, vol. 178(C), pages 832-852.
    12. Qi, Yu & Shao, Shuai & Tian, Zhihua & Xu, Yang & Yin, Jun, 2022. "Environmental consequences of fair competition: Evidence from China's corporate income tax merger policy," Ecological Economics, Elsevier, vol. 195(C).
    13. George E. Halkos & Michael L. Polemis, 2019. "The impact of market structure on environmental efficiency in the United States: A quantile approach," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 127-142, January.
    14. D’Inverno, Giovanna & Carosi, Laura & Romano, Giulia & Guerrini, Andrea, 2018. "Water pollution in wastewater treatment plants: An efficiency analysis with undesirable output," European Journal of Operational Research, Elsevier, vol. 269(1), pages 24-34.
    15. Zhang, Guanglu & Lin, Boqiang, 2018. "Impact of structure on unified efficiency for Chinese service sector—A two-stage analysis," Applied Energy, Elsevier, vol. 231(C), pages 876-886.
    16. Zhang, Ning & Zhao, Yu & Wang, Na, 2022. "Is China's energy policy effective for power plants? Evidence from the 12th Five-Year Plan energy saving targets," Energy Economics, Elsevier, vol. 112(C).
    17. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    18. Kounetas, Konstantinos & Zervopoulos, Panagiotis D., 2019. "A cross-country evaluation of environmental performance: Is there a convergence-divergence pattern in technology gaps?," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1136-1148.
    19. Ma, Ding & Fei, Rilong & Yu, Yongsheng, 2019. "How government regulation impacts on energy and CO2 emissions performance in China's mining industry," Resources Policy, Elsevier, vol. 62(C), pages 651-663.
    20. Auriol, Emmanuelle & Blanc, Aymeric, 2009. "Capture and corruption in public utilities: The cases of water and electricity in Sub-Saharan Africa," Utilities Policy, Elsevier, vol. 17(2), pages 203-216, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7290-:d:1268611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.