IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v18y2025i16p4245-d1721251.html
   My bibliography  Save this article

Energy Arbitrage Analysis for Market-Selection of a Battery Energy Storage System-Based Venture

Author

Listed:
  • Inam Ullah Khan

    (Department of Electrical & Computer Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, 240 Prince Phillip Drive, St. John’s, NL A1B 3X5, Canada)

  • Mohsin Jamil

    (Department of Electrical & Computer Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, 240 Prince Phillip Drive, St. John’s, NL A1B 3X5, Canada)

Abstract

The increasing integration of intermittent renewable energy sources necessitates effective energy storage solutions, with battery energy storage systems (BESSs) emerging as promising candidates for energy arbitrage operations. This study conducted a comprehensive comparative analysis of 29 European electricity markets to identify optimal locations for utility-scale BESS-enabled energy arbitrage ventures. Using hourly wholesale electricity price data spanning January 2015 to December 2023, we employed statistical analysis techniques, 3D surface plots, and developed a novel energy arbitrage feasibility (EAF) score-based ranking system that integrates electricity market volatility metrics with regulatory and economic variables including gross domestic product per capita, index of economic freedom, and electricity supply-origin risk (ESOR). Five investor preference scenarios were analyzed: risk-averse, ESOR-sensitive, economy-sensitive, volatility-sensitive, and equally weighted approaches. Results demonstrated that Estonia ranked highest in three scenarios, achieving the maximum absolute EAF score of 0.558197 in the volatility-sensitive scenario, while Luxembourg led in the ESOR and economy-sensitive scenarios. Estonia’s market characteristics support single daily charge–discharge cycles, whereas Luxembourg enables dual cycles, offering different operational strategies. The EAF scoring methodology provides a standardized framework for cross-country investment decision-making in energy arbitrage ventures. These findings indicate that market selection significantly impacts the BESS arbitrage profitability, with Estonia and Luxembourg representing the most favorable investment destinations.

Suggested Citation

  • Inam Ullah Khan & Mohsin Jamil, 2025. "Energy Arbitrage Analysis for Market-Selection of a Battery Energy Storage System-Based Venture," Energies, MDPI, vol. 18(16), pages 1-43, August.
  • Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4245-:d:1721251
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/18/16/4245/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/18/16/4245/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Grubb & David Newbery, 2018. "UK Electricity Market Reform and the Energy Transition:Emerging Lessons," The Energy Journal, , vol. 39(6), pages 1-26, November.
    2. Fulin Fan & Giorgio Zorzi & David Campos-Gaona & Graeme Burt & Olimpo Anaya-Lara & John Nwobu & Ander Madariaga, 2021. "Sizing and Coordination Strategies of Battery Energy Storage System Co-Located with Wind Farm: The UK Perspective," Energies, MDPI, vol. 14(5), pages 1-21, March.
    3. Tooraj Jamasb & Michael Pollitt, 2005. "Electricity Market Reform in the European Union: Review of Progress toward Liberalization &Integration," The Energy Journal, , vol. 26(1_suppl), pages 11-41, June.
    4. Dušan B. Gajić & Veljko B. Petrović & Nebojša Horvat & Dinu Dragan & Aleksandar Stanisavljević & Vladimir Katić & Jelena Popović, 2022. "A Distributed Ledger-Based Automated Marketplace for the Decentralized Trading of Renewable Energy in Smart Grids," Energies, MDPI, vol. 15(6), pages 1-26, March.
    5. Pablo David Necoechea-Porras & Asunción López & Juan Carlos Salazar-Elena, 2021. "Deregulation in the Energy Sector and Its Economic Effects on the Power Sector: A Literature Review," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    6. Renjie Yu & Peng Yuan & Fandi Yang & Gongxiong Jiang, 2023. "Effects of Vertical Unbundling on the Operational and Environmental Efficiency of Chinese Thermal Power Firms," Energies, MDPI, vol. 16(21), pages 1-22, October.
    7. Juyong Lee & Youngsang Cho & Yoonmo Koo & Chansoo Park, 2018. "Effects of Market Reform on Facility Investment in Electric Power Industry: Panel Data Analysis of 27 Countries," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    8. Štefan Bojnec, 2023. "Electricity Markets, Electricity Prices and Green Energy Transition," Energies, MDPI, vol. 16(2), pages 1-4, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Mayer & Christopher Stephen Ball & Stefan Vögele & Wilhelm Kuckshinrichs & Dirk Rübbelke, 2019. "Analyzing Brexit: Implications for the Electricity System of Great Britain," Energies, MDPI, vol. 12(17), pages 1-27, August.
    2. Gencer, Busra & Larsen, Erik Reimer & van Ackere, Ann, 2020. "Understanding the coevolution of electricity markets and regulation," Energy Policy, Elsevier, vol. 143(C).
    3. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    4. Simshauser, Paul, 2024. "On static vs. dynamic line ratings in renewable energy zones," Energy Economics, Elsevier, vol. 129(C).
    5. Marino, Marianna & Parrotta, Pierpaolo & Valletta, Giacomo, 2019. "Electricity (de)regulation and innovation," Research Policy, Elsevier, vol. 48(3), pages 748-758.
    6. Victor Ajayi & Michael Pollitt, 2022. "Changing times - Incentive regulation, corporate reorganisations, and productivity in Great Britain’s gas networks," Working Papers 023, The Productivity Institute.
    7. Bondarev, Anton & Weigt, Hannes, 2017. "Sensitivity of energy system investments to policy regulation changes: Application of the blue sky catastrophe," Working papers 2017/08, Faculty of Business and Economics - University of Basel.
    8. Mara Madaleno & Victor Moutinho & Jorge Mota, 2015. "Time Relationships among Electricity and Fossil Fuel Prices: Industry and Households in Europe," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 525-533.
    9. Pär Holmberg & Robert A. Ritz, 2021. "Optimal Capacity Mechanisms for Competitive Electricity Markets," The Energy Journal, , vol. 42(1_suppl), pages 1-34, June.
    10. Chen, Hao & Cui, Jian & Song, Feng & Jiang, Zhigao, 2022. "Evaluating the impacts of reforming and integrating China's electricity sector," Energy Economics, Elsevier, vol. 108(C).
    11. McConnell, Dylan & Forcey, Tim & Sandiford, Mike, 2015. "Estimating the value of electricity storage in an energy-only wholesale market," Applied Energy, Elsevier, vol. 159(C), pages 422-432.
    12. Lyu, Chenyan & Do, Hung Xuan & Nepal, Rabindra & Jamasb, Tooraj, 2024. "Volatility spillovers and carbon price in the Nordic wholesale electricity markets," Energy Economics, Elsevier, vol. 134(C).
    13. Alfredo Alcayde & Raul Baños & Francisco M. Arrabal-Campos & Francisco G. Montoya, 2019. "Optimization of the Contracted Electric Power by Means of Genetic Algorithms," Energies, MDPI, vol. 12(7), pages 1-13, April.
    14. Richard Green & Arturo Lorenzoni & Yannick Perez & Michael Pollitt, 2006. "Benchmarking Electricity Liberalisation in Europe," Working Papers EPRG 0609, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    15. Simone Di Leo & Marta Chicca & Cinzia Daraio & Andrea Guerrini & Stefano Scarcella, 2022. "A Framework for the Analysis of the Sustainability of the Energy Retail Market," Sustainability, MDPI, vol. 14(12), pages 1-28, June.
    16. Kim, S. & Dodds, P.E. & Butnar, I., 2025. "Economic feasibility of low-carbon ethylene, propylene and jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
    17. Michael G. Pollitt and Karim L. Anaya, 2016. "Can current electricity markets cope with high shares of renewables? A comparison of approaches in Germany, the UK and the State of New York," The Energy Journal, International Association for Energy Economics, vol. 0(Bollino-M).
    18. Ricardo Raineri, 2025. "Power Shift: Decarbonization and the New Dynamics of Energy Markets," Energies, MDPI, vol. 18(3), pages 1-52, February.
    19. Gohdes, Nicholas & Simshauser, Paul & Wilson, Clevo, 2022. "Renewable entry costs, project finance and the role of revenue quality in Australia's National Electricity Market," Energy Economics, Elsevier, vol. 114(C).
    20. Ibarra-Yunez, Alejandro, 2015. "Energy reform in Mexico: Imperfect unbundling in the electricity sector," Utilities Policy, Elsevier, vol. 35(C), pages 19-27.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4245-:d:1721251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.