IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v216y2025ics1364032125003211.html
   My bibliography  Save this article

Economic feasibility of low-carbon ethylene, propylene and jet fuel production

Author

Listed:
  • Kim, S.
  • Dodds, P.E.
  • Butnar, I.

Abstract

Jet fuel and key chemical building blocks (e.g. ethylene) cannot easily be substituted with zero-carbon alternatives and remain interconnected in a low-carbon future. Fischer-Tropsch and methanol synthesis offer pathways toward large-scale production of low-carbon synthetic hydrocarbons. This paper estimates the future costs of low-carbon ethylene, propylene, and jet fuel via those routes with feedstocks of either biomass or electricity with captured CO2. It finds while biobased hydrocarbons could fall below 1.1 USD/kg, electricity-based hydrocarbons using atmospheric CO2, even with the optimistic views, result in 4 USD/kg for ethylene, 2.3 USD/kg for propylene and 2.9 USD/kg for jet fuel. Using industry-captured CO2 as the carbon source could cut production costs by 28 %, but its future availability is likely to be limited. Offsetting existing hydrocarbon industries through direct air carbon capture and storage is projected to be more economical compared to electricity-based hydrocarbons. This research highlights the necessity for transitioning to a net zero power system to reduce electricity prices. As these technologies each produce multiple products and their business cases depend on sales of all products, a coherent cross-sectoral strategy to incentivise low-carbon fuels and chemicals would be valuable to ensure that the overall production reflects demand throughout a low-carbon transition.

Suggested Citation

  • Kim, S. & Dodds, P.E. & Butnar, I., 2025. "Economic feasibility of low-carbon ethylene, propylene and jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003211
    DOI: 10.1016/j.rser.2025.115648
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125003211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115648?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Michael Grubb and David Newbery, 2018. "UK Electricity Market Reform and the Energy Transition: Emerging Lessons," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    2. Rosa, Lorenzo & Mazzotti, Marco, 2022. "Potential for hydrogen production from sustainable biomass with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    3. Dimitriou, Ioanna & Goldingay, Harry & Bridgwater, Anthony V., 2018. "Techno-economic and uncertainty analysis of Biomass to Liquid (BTL) systems for transport fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 160-175.
    4. Falko Ueckerdt & Christian Bauer & Alois Dirnaichner & Jordan Everall & Romain Sacchi & Gunnar Luderer, 2021. "Potential and risks of hydrogen-based e-fuels in climate change mitigation," Nature Climate Change, Nature, vol. 11(5), pages 384-393, May.
    5. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    6. Price, James & Keppo, Ilkka & Dodds, Paul E., 2023. "The role of new nuclear power in the UK's net-zero emissions energy system," Energy, Elsevier, vol. 262(PA).
    7. Lynnette Dray & Andreas W. Schäfer & Carla Grobler & Christoph Falter & Florian Allroggen & Marc E. J. Stettler & Steven R. H. Barrett, 2022. "Cost and emissions pathways towards net-zero climate impacts in aviation," Nature Climate Change, Nature, vol. 12(10), pages 956-962, October.
    8. Kim, Seokyoung & Dodds, Paul E. & Butnar, Isabela, 2024. "Technoeconomic characterisation of low-carbon liquid hydrocarbons production," Energy, Elsevier, vol. 294(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    2. Davide Tonelli & Lorenzo Rosa & Paolo Gabrielli & Ken Caldeira & Alessandro Parente & Francesco Contino, 2023. "Global land and water limits to electrolytic hydrogen production using wind and solar resources," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    4. Hoelzen, J. & Silberhorn, D. & Schenke, F. & Stabenow, E. & Zill, T. & Bensmann, A. & Hanke-Rauschenbach, R., 2025. "H2-powered aviation – Optimized aircraft and green LH2 supply in air transport networks," Applied Energy, Elsevier, vol. 380(C).
    5. Lester, Mason Scott & Bramstoft, Rasmus & Münster, Marie, 2020. "Analysis on Electrofuels in Future Energy Systems: A 2050 Case Study," Energy, Elsevier, vol. 199(C).
    6. Liu, Haifeng & Ampah, Jeffrey Dankwa & Afrane, Sandylove & Adun, Humphrey & Jin, Chao & Yao, Mingfa, 2023. "Deployment of hydrogen in hard-to-abate transport sectors under limited carbon dioxide removal (CDR): Implications on global energy-land-water system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    7. Martin, Jonas & Neumann, Anne & Ødegård, Anders, 2023. "Renewable hydrogen and synthetic fuels versus fossil fuels for trucking, shipping and aviation: A holistic cost model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    8. Candelaria Bergero & Greer Gosnell & Dolf Gielen & Seungwoo Kang & Morgan Bazilian & Steven J. Davis, 2023. "Pathways to net-zero emissions from aviation," Nature Sustainability, Nature, vol. 6(4), pages 404-414, April.
    9. Alfredas Rimkus & Justas Žaglinskis & Saulius Stravinskas & Paulius Rapalis & Jonas Matijošius & Ákos Bereczky, 2019. "Research on the Combustion, Energy and Emission Parameters of Various Concentration Blends of Hydrotreated Vegetable Oil Biofuel and Diesel Fuel in a Compression-Ignition Engine," Energies, MDPI, vol. 12(15), pages 1-18, August.
    10. Adrian Odenweller & Falko Ueckerdt, 2024. "The green hydrogen ambition and implementation gap," Papers 2406.07210, arXiv.org.
    11. Kanchiralla, Fayas Malik & Brynolf, Selma & Olsson, Tobias & Ellis, Joanne & Hansson, Julia & Grahn, Maria, 2023. "How do variations in ship operation impact the techno-economic feasibility and environmental performance of fossil-free fuels? A life cycle study," Applied Energy, Elsevier, vol. 350(C).
    12. Torkayesh, Ali Ebadi & Venghaus, Sandra, 2024. "Decoding the transport policy maze towards climate neutrality: Cross-sectoral policy landscapes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
    13. Torkayesh, Ali Ebadi & Venghaus, Sandra, 2024. "Germany’s Power-to-X policy for climate-neutral transport," Energy, Elsevier, vol. 313(C).
    14. Adrian Odenweller & Falko Ueckerdt, 2025. "The green hydrogen ambition and implementation gap," Nature Energy, Nature, vol. 10(1), pages 110-123, January.
    15. Tom Terlouw & Lorenzo Rosa & Christian Bauer & Russell McKenna, 2024. "Future hydrogen economies imply environmental trade-offs and a supply-demand mismatch," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Kim, Seokyoung & Dodds, Paul E. & Butnar, Isabela, 2024. "Technoeconomic characterisation of low-carbon liquid hydrocarbons production," Energy, Elsevier, vol. 294(C).
    17. Campion, Nicolas & Nami, Hossein & Swisher, Philip R. & Vang Hendriksen, Peter & Münster, Marie, 2023. "Techno-economic assessment of green ammonia production with different wind and solar potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    18. Lu, Teng & Shi, Xiaorong & Zhao, Ke & Liu, Peiliang & Hou, Jian, 2025. "Enhancing hydrogen recovery and carbon sequestration efficiency in natural hydrogen reservoirs through CO2 injection: An experimental and simulation study," Renewable Energy, Elsevier, vol. 245(C).
    19. Prussi, M. & Noussan, M. & Laveneziana, L. & Chiaramonti, D., 2025. "The risk of increasing energy demand while pursuing decarbonisation: the case of the e-fuels for the EU aviation sector," Transport Policy, Elsevier, vol. 160(C), pages 154-158.
    20. Iqbal, Sajid & Zhang, Qingyu & Chang, Ming, 2025. "Turning waste to watts: studying tyre pyrolysis oil production supply for electricity generation and net-zero carbon emission with life cycle assessment approach," Energy, Elsevier, vol. 324(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:216:y:2025:i:c:s1364032125003211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.