IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v86y2020ics0140988320300141.html
   My bibliography  Save this article

Efficiency distortion of the power generation sector under the dual regulation of price and quantity in China

Author

Listed:
  • Sun, Kege
  • Wu, Libo

Abstract

Separation of vertical integrated electricity sector and removal of entry barriers for power generation investment were advocated by China's electricity market reform in 2002. While market competitions were expected to intensify along with the increasing number of power generators and diversified ownerships, two major interventions, namely Benchmark On-grid Price regulations by the government and peak-frequency regulations by the dispatching organization manipulated the market competition frequently. This paper analyzes the mechanism of how dual regulation of price and quantity affects the efficiency of power plants, and then advocates an improved stochastic frontier analysis to examine the efficiency distortion of various utilities due to the price and quantity regulation by employing a newly developed firm-level data sets of power generation plants with capacity above 6000 kw over 2007 to 2012 in China, this paper shows that price regulation led to a deterioration of efficiency performance caused by the exaggeration with the actual on-grid price from the optimal equilibrium price. Additionally, centrally dispatched power plants suffered from negative impact of quantity regulation on the transient efficiency. Besides, the interactive effect of price and quantity regulation indicates that price regulation has greater negative impact on the centrally dispatched power plants than the non-centrally dispatched ones. There is also difference between the power plants of sub-industries. The thermal power plants are significantly influenced by the price and quantity regulation, while the renewable power plants are less likely to be influenced.

Suggested Citation

  • Sun, Kege & Wu, Libo, 2020. "Efficiency distortion of the power generation sector under the dual regulation of price and quantity in China," Energy Economics, Elsevier, vol. 86(C).
  • Handle: RePEc:eee:eneeco:v:86:y:2020:i:c:s0140988320300141
    DOI: 10.1016/j.eneco.2020.104675
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988320300141
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Ming & Mander, Sarah & Zhao, Xiaoli & Niu, Dongxiao, 2016. "Have market-oriented reforms improved the electricity generation efficiency of China's thermal power industry? An empirical analysis," Energy, Elsevier, vol. 114(C), pages 734-741.
    2. Roberto Colombi & Subal Kumbhakar & Gianmaria Martini & Giorgio Vittadini, 2014. "Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency," Journal of Productivity Analysis, Springer, vol. 42(2), pages 123-136, October.
    3. Margono, Heru & Sharma, Subhash C., 2006. "Efficiency and productivity analyses of Indonesian manufacturing industries," Journal of Asian Economics, Elsevier, vol. 17(6), pages 979-995, December.
    4. Massimo Filippini & William Greene, 2016. "Persistent and transient productive inefficiency: a maximum simulated likelihood approach," Journal of Productivity Analysis, Springer, vol. 45(2), pages 187-196, April.
    5. Chernenko, Nadia, 2015. "Market power issues in the reformed Russian electricity supply industry," Energy Economics, Elsevier, vol. 50(C), pages 315-323.
    6. Chan, H. Ron & Fell, Harrison & Lange, Ian & Li, Shanjun, 2017. "Efficiency and environmental impacts of electricity restructuring on coal-fired power plants," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 1-18.
    7. Heshmati, Almas & Kumbhakar, Subal C. & Sun, Kai, 2014. "Estimation of productivity in Korean electric power plants: A semiparametric smooth coefficient model," Energy Economics, Elsevier, vol. 45(C), pages 491-500.
    8. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    9. Pitt, Mark M. & Lee, Lung-Fei, 1981. "The measurement and sources of technical inefficiency in the Indonesian weaving industry," Journal of Development Economics, Elsevier, vol. 9(1), pages 43-64, August.
    10. Zhao, Xiaoli & Ma, Chunbo, 2013. "Deregulation, vertical unbundling and the performance of China's large coal-fired power plants," Energy Economics, Elsevier, vol. 40(C), pages 474-483.
    11. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    12. Subal C. Kumbhakar & Almas Heshmati, 1995. "Efficiency Measurement in Swedish Dairy Farms: An Application of Rotating Panel Data, 1976–88," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(3), pages 660-674.
    13. Brandt, Loren & Van Biesebroeck, Johannes & Zhang, Yifan, 2012. "Creative accounting or creative destruction? Firm-level productivity growth in Chinese manufacturing," Journal of Development Economics, Elsevier, vol. 97(2), pages 339-351.
    14. Massimo Filippini & William Greene, 2016. "Persistent and transient productive inefficiency: a maximum simulated likelihood approach," Journal of Productivity Analysis, Springer, vol. 45(2), pages 187-196, April.
    15. Le, Viet & Vu, Xuan-Binh (Benjamin) & Nghiem, Son, 2018. "Technical efficiency of small and medium manufacturing firms in Vietnam: A stochastic meta-frontier analysis," Economic Analysis and Policy, Elsevier, vol. 59(C), pages 84-91.
    16. David H. Bernstein & Christopher F. Parmeter, 2017. "Returns to Scale in Electricity Generation: Revisited and Replicated," Working Papers 2017-08, University of Miami, Department of Economics.
    17. Badunenko, Oleg & Kumbhakar, Subal C., 2017. "Economies of scale, technical change and persistent and time-varying cost efficiency in Indian banking: Do ownership, regulation and heterogeneity matter?," European Journal of Operational Research, Elsevier, vol. 260(2), pages 789-803.
    18. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    19. Severin Borenstein & James B. Bushnell & Frank A. Wolak, 2002. "Measuring Market Inefficiencies in California's Restructured Wholesale Electricity Market," American Economic Review, American Economic Association, vol. 92(5), pages 1376-1405, December.
    20. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    21. Kira R. Fabrizio & Nancy L. Rose & Catherine D. Wolfram, 2007. "Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on US Electric Generation Efficiency," American Economic Review, American Economic Association, vol. 97(4), pages 1250-1277, September.
    22. L. Dean Hiebert, 2002. "The Determinants of the Cost Efficiency of Electric Generating Plants: A Stochastic Frontier Approach," Southern Economic Journal, Southern Economic Association, vol. 68(4), pages 935-946, April.
    23. Du, Limin & He, Yanan & Yan, Jianye, 2013. "The effects of electricity reforms on productivity and efficiency of China's fossil-fired power plants: An empirical analysis," Energy Economics, Elsevier, vol. 40(C), pages 804-812.
    24. Sugathan, Anish & Malghan, Deepak & Chandrashekar, S. & Sinha, Deepak K., 2019. "Downstream electric utility restructuring and upstream generation efficiency: Productivity dynamics of Indian coal and gas based electricity generators," Energy, Elsevier, vol. 178(C), pages 832-852.
    25. Ma, Chunbo & Zhao, Xiaoli, 2015. "China's electricity market restructuring and technology mandates: Plant-level evidence for changing operational efficiency," Energy Economics, Elsevier, vol. 47(C), pages 227-237.
    26. Ghosh, Ranjan & Kathuria, Vinish, 2016. "The effect of regulatory governance on efficiency of thermal power generation in India: A stochastic frontier analysis," Energy Policy, Elsevier, vol. 89(C), pages 11-24.
    27. Zeng, Ming & Yang, Yongqi & Wang, Lihua & Sun, Jinghui, 2016. "The power industry reform in China 2015: Policies, evaluations and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 94-110.
    28. Filippini, M. & Greene, W. & Masiero, G., 2018. "Persistent and transient productive inefficiency in a regulated industry: electricity distribution," Energy Economics, Elsevier, vol. 69(C), pages 325-334.
    29. Karl Lundvall & George Battese, 2000. "Firm size, age and efficiency: Evidence from Kenyan manufacturing firms," Journal of Development Studies, Taylor & Francis Journals, vol. 36(3), pages 146-163.
    30. Badunenko, Oleg & Kumbhakar, Subal C., 2016. "When, where and how to estimate persistent and transient efficiency in stochastic frontier panel data models," European Journal of Operational Research, Elsevier, vol. 255(1), pages 272-287.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernstein, David H., 2020. "An updated assessment of technical efficiency and returns to scale for U.S. electric power plants," Energy Policy, Elsevier, vol. 147(C).
    2. Lien, Gudbrand & Kumbhakar, Subal C. & Alem, Habtamu, 2018. "Endogeneity, heterogeneity, and determinants of inefficiency in Norwegian crop-producing farms," International Journal of Production Economics, Elsevier, vol. 201(C), pages 53-61.
    3. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    4. Pontus Mattsson & Jonas Mansson & William H. Greene, 2018. "TFP Change and its Components for Swedish Manufacturing Firms During the 2008-2009 Financial Crisis," Working Papers 18-27, New York University, Leonard N. Stern School of Business, Department of Economics.
    5. Albalate, Daniel & Rosell, Jordi, 2019. "On the efficiency of toll motorway companies in Spain," Research in Transportation Economics, Elsevier, vol. 76(C).
    6. Tommaso Agasisti & Sabine Gralka, 2019. "The transient and persistent efficiency of Italian and German universities: a stochastic frontier analysis," Applied Economics, Taylor & Francis Journals, vol. 51(46), pages 5012-5030, October.
    7. Subal C. Kumbhakar & Gudbrand Lien, 2017. "Yardstick Regulation of Electricity Distribution Disentangling Short-run and Long-run Inefficiencies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    8. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    9. Massimo Filippini & Thomas Geissmann & William H. Greene, 2018. "Persistent and transient cost efficiency—an application to the Swiss hydropower sector," Journal of Productivity Analysis, Springer, vol. 49(1), pages 65-77, February.
    10. Roberto Colombi & Gianmaria Martini & Giorgio Vittadini, 2017. "Determinants of transient and persistent hospital efficiency: The case of Italy," Health Economics, John Wiley & Sons, Ltd., vol. 26(S2), pages 5-22, September.
    11. Manuel Salas‐Velasco, 2020. "Assessing the performance of Spanish secondary education institutions: Distinguishing between transient and persistent inefficiency, separated from heterogeneity," Manchester School, University of Manchester, vol. 88(4), pages 531-555, July.
    12. Heshmati, Almas & C. Kumbhakar, Subal & Kim, Jungsuk, 2016. "Persistent and Transient Efficiency of International Airlines," Working Paper Series in Economics and Institutions of Innovation 444, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    13. Pontus Mattsson & Jonas Månsson & William H. Greene, 2020. "TFP change and its components for Swedish manufacturing firms during the 2008–2009 financial crisis," Journal of Productivity Analysis, Springer, vol. 53(1), pages 79-93, February.
    14. Kamil Makieła, 2017. "Bayesian Inference and Gibbs Sampling in Generalized True Random-Effects Models," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 9(1), pages 69-95, March.
    15. Musau, Andrew & Kumbhakar, Subal C. & Mydland, Ørjan & Lien, Gudbrand, 2021. "Determinants of allocative and technical inefficiency in stochastic frontier models: An analysis of Norwegian electricity distribution firms," European Journal of Operational Research, Elsevier, vol. 288(3), pages 983-991.
    16. Glass, Anthony J. & Kenjegalieva, Karligash, 2019. "A spatial productivity index in the presence of efficiency spillovers: Evidence for U.S. banks, 1992–2015," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1165-1179.
    17. Sugathan, Anish & Malghan, Deepak & Chandrashekar, S. & Sinha, Deepak K., 2019. "Downstream electric utility restructuring and upstream generation efficiency: Productivity dynamics of Indian coal and gas based electricity generators," Energy, Elsevier, vol. 178(C), pages 832-852.
    18. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2017. "Stochastic Frontier Analysis: Foundations and Advances," Working Papers 2017-10, University of Miami, Department of Economics.
    19. Filippini, M. & Greene, W. & Masiero, G., 2018. "Persistent and transient productive inefficiency in a regulated industry: electricity distribution," Energy Economics, Elsevier, vol. 69(C), pages 325-334.
    20. Badunenko, Oleg & Kumbhakar, Subal C., 2016. "When, where and how to estimate persistent and transient efficiency in stochastic frontier panel data models," European Journal of Operational Research, Elsevier, vol. 255(1), pages 272-287.

    More about this item

    Keywords

    Technical efficiency of power plants; Price regulation; Quantity regulation; Stochastic frontier analysis;
    All these keywords.

    JEL classification:

    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L51 - Industrial Organization - - Regulation and Industrial Policy - - - Economics of Regulation
    • L53 - Industrial Organization - - Regulation and Industrial Policy - - - Enterprise Policy
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:86:y:2020:i:c:s0140988320300141. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Nithya Sathishkumar). General contact details of provider: http://www.elsevier.com/locate/eneco .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.