IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp7277.html
   My bibliography  Save this paper

Estimation of Productivity in Korean Electric Power Plants: A Semiparametric Smooth Coefficient Model

Author

Listed:
  • Heshmati, Almas

    () (Jönköping University, Sogang University)

  • Kumbhakar, Subal C.

    () (Binghamton University, New York)

  • Sun, Kai

    () (Aston University)

Abstract

This paper analyzes the impact of load factor, facility and generator types on the productivity of Korean electric power plants. In order to capture important differences in the effect of load policy on power output, we use a semiparametric smooth coefficient (SPSC) model that allows us to model heterogeneous performances across power plants and over time by allowing underlying technologies to be heterogeneous. The SPSC model accommodates both continuous and discrete covariates. Various specification tests are conducted to compare performance of the SPSC model. Using a unique generator level panel dataset spanning the period 1995-2006, we find that the impact of load factor, generator and facility types on power generation varies substantially in terms of magnitude and significance across different plant characteristics. The results have strong implication for generation policy in Korea as outlined in this study.

Suggested Citation

  • Heshmati, Almas & Kumbhakar, Subal C. & Sun, Kai, 2013. "Estimation of Productivity in Korean Electric Power Plants: A Semiparametric Smooth Coefficient Model," IZA Discussion Papers 7277, Institute for the Study of Labor (IZA).
  • Handle: RePEc:iza:izadps:dp7277
    as

    Download full text from publisher

    File URL: http://ftp.iza.org/dp7277.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    2. Park, B. U. & Sickles, R. C. & Simar, L., 1998. "Stochastic panel frontiers: A semiparametric approach," Journal of Econometrics, Elsevier, vol. 84(2), pages 273-301, June.
    3. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    4. Fan, Yanqin & Li, Qi, 1996. "Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms," Econometrica, Econometric Society, vol. 64(4), pages 865-890, July.
    5. Almas Heshmati, 2014. "Demand, Customer Base-Line And Demand Response In The Electricity Market: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 862-888, December.
    6. Shin, Jungwoo & Woo, JongRoul & Huh, Sung-Yoon & Lee, Jongsu & Jeong, Gicheol, 2014. "Analyzing public preferences and increasing acceptability for the Renewable Portfolio Standard in Korea," Energy Economics, Elsevier, vol. 42(C), pages 17-26.
    7. Ryu, Hanee & Dorjragchaa, Shonkhor & Kim, Yeonbae & Kim, Kyunam, 2014. "Electricity-generation mix considering energy security and carbon emission mitigation: Case of Korea and Mongolia," Energy, Elsevier, vol. 64(C), pages 1071-1079.
    8. Park, Soo-Uk & Lesourd, Jean-Baptiste, 2000. "The efficiency of conventional fuel power plants in South Korea: A comparison of parametric and non-parametric approaches," International Journal of Production Economics, Elsevier, vol. 63(1), pages 59-67, January.
    9. Griliches, Zvi, 1986. "Productivity, R&D, and the Basic Research at the Firm Level in the 1970's," American Economic Review, American Economic Association, vol. 76(1), pages 141-154, March.
    10. Min, Daiki & Chung, Jaewoo, 2013. "Evaluation of the long-term power generation mix: The case study of South Korea's energy policy," Energy Policy, Elsevier, vol. 62(C), pages 1544-1552.
    11. Lee, Byoung-Hoon & Ahn, Hyeon-Hyo, 2006. "Electricity industry restructuring revisited: the case of Korea," Energy Policy, Elsevier, vol. 34(10), pages 1115-1126, July.
    12. Park, Eunil & Ohm, Jay Y., 2014. "Factors influencing the public intention to use renewable energy technologies in South Korea: Effects of the Fukushima nuclear accident," Energy Policy, Elsevier, vol. 65(C), pages 198-211.
    13. Baek, Jungho & Kim, Hyun Seok, 2013. "Is economic growth good or bad for the environment? Empirical evidence from Korea," Energy Economics, Elsevier, vol. 36(C), pages 744-749.
    14. Li, Qi, et al, 2002. "Semiparametric Smooth Coefficient Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 412-422, July.
    15. Li, Qi & Racine, Jeffrey S., 2010. "Smooth Varying-Coefficient Estimation And Inference For Qualitative And Quantitative Data," Econometric Theory, Cambridge University Press, vol. 26(06), pages 1607-1637, December.
    16. Zvi Griliches, 1998. "Issues in Assessing the Contribution of Research and Development to Productivity Growth," NBER Chapters,in: R&D and Productivity: The Econometric Evidence, pages 17-45 National Bureau of Economic Research, Inc.
    17. Kim, Hoseok & Shin, Eui-soon & Chung, Woo-jin, 2011. "Energy demand and supply, energy policies, and energy security in the Republic of Korea," Energy Policy, Elsevier, vol. 39(11), pages 6882-6897.
    18. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, number 8355.
    19. Hayashi, Masatsugu & Hughes, Larry, 2013. "The policy responses to the Fukushima nuclear accident and their effect on Japanese energy security," Energy Policy, Elsevier, vol. 59(C), pages 86-101.
    20. Choi, Ki-Hong & Ang, B.W., 2002. "Measuring thermal efficiency improvement in power generation," Energy, Elsevier, vol. 27(5), pages 447-455.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seifert, Stefan, 2015. "Productivity Growth and its Sources - A StoNED Metafrontier Analyis of the German Electricity Generating Sector," Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 112975, Verein für Socialpolitik / German Economic Association.
    2. Stefan Seifert & Astrid Cullmann & Christian von Hirschhausen, 2014. "Technical Efficiency and CO2 Reduction Potentials: An Analysis of the German Electricity Generating Sector," Discussion Papers of DIW Berlin 1426, DIW Berlin, German Institute for Economic Research.
    3. Subal C. Kumbhakar & Kai Sun & Rui Zhang, 2016. "Semiparametric Smooth Coefficient Estimation of a Production System," Pacific Economic Review, Wiley Blackwell, vol. 21(4), pages 464-482, October.
    4. Stefan Seifert, 2015. "Measuring Productivity When Technologies Are Heterogeneous: A Semi-Parametric Approach for Electricity Generation," Discussion Papers of DIW Berlin 1526, DIW Berlin, German Institute for Economic Research.
    5. Dai, Xiaoyong & Cheng, Liwei, 2016. "Market distortions and aggregate productivity: Evidence from Chinese energy enterprises," Energy Policy, Elsevier, vol. 95(C), pages 304-313.
    6. repec:eee:rensus:v:82:y:2018:i:p3:p:3962-3971 is not listed on IDEAS
    7. Oh, Dong-hyun & Lee, Yong-Gil, 2016. "Productivity decomposition and economies of scale of Korean fossil-fuel power generation companies: 2001–2012," Energy, Elsevier, vol. 100(C), pages 1-9.
    8. Seifert, Stefan & Cullmann, Astrid & von Hirschhausen, Christian, 2016. "Technical efficiency and CO2 reduction potentials — An analysis of the German electricity and heat generating sector," Energy Economics, Elsevier, vol. 56(C), pages 9-19.
    9. Kai Sun, 2015. "Constrained nonparametric estimation of input distance function," Journal of Productivity Analysis, Springer, vol. 43(1), pages 85-97, February.

    More about this item

    Keywords

    electricity generation; smooth varying-coefficient model; semiparametric estimation; generator level panel data;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L25 - Industrial Organization - - Firm Objectives, Organization, and Behavior - - - Firm Performance
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp7277. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Fallak). General contact details of provider: http://www.iza.org .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.