IDEAS home Printed from https://ideas.repec.org/a/wly/natres/v49y2025i1p197-221.html
   My bibliography  Save this article

Evaluating energy cost performance in China's thermal power industry: A global cost Malmquist approach

Author

Listed:
  • Weiwei Zhuang
  • Jiayu Zhang
  • Taisheng Zhang
  • Xiang Chen

Abstract

With the inclusion of carbon neutrality in the Government Work Report for the first time at the two sessions held in March 2021 and the strengthening of environmental regulation as well as the increase of limits on polluting gas emissions, it has become increasingly important for China to effectively save energy and reduce carbon for sustainable growth under the “dual carbon” target. Since thermal power generation is the most important source of carbon emissions in China, the thermal power industry is the key to achieving the goal of carbon peaking and carbon neutrality. Therefore, it is of great theoretical and practical importance to study the performance of thermal power generation from the micro perspective of power plants. This paper provides a new perspective on the environmental efficiency measurement of thermal power plants by introducing the cost factors of inputs into the model and constructing a global cost Malmquist productivity index, which can effectively solve the problem of the infeasibility of linear programming and different measures of productivity change, to obtain the productivity performance of China's thermal power industry from 2013 to 2017. The empirical results indicate that: (1) The significant decrease in price effect (PE) is the main driving factor of this situation. (2) Except for the central region, the production technology, technical efficiency, and allocative efficiency related to thermal power generation have increased in the eastern and western regions. Therefore, improving CMG productivity in the central region is more challenging than in the other two regions and improving the PE can significantly improve CMG productivity in China's thermal power industry. This study reveals the spatiotemporal characteristics and influencing factors of production efficiency in China's thermal power industry, which can provide targeted policy guidance for managers to improve the sustainable development of power enterprises.

Suggested Citation

  • Weiwei Zhuang & Jiayu Zhang & Taisheng Zhang & Xiang Chen, 2025. "Evaluating energy cost performance in China's thermal power industry: A global cost Malmquist approach," Natural Resources Forum, Blackwell Publishing, vol. 49(1), pages 197-221, February.
  • Handle: RePEc:wly:natres:v:49:y:2025:i:1:p:197-221
    DOI: 10.1111/1477-8947.12383
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1477-8947.12383
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1477-8947.12383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    2. Walheer, Barnabé, 2018. "Disaggregation of the cost Malmquist productivity index with joint and output-specific inputs," Omega, Elsevier, vol. 75(C), pages 1-12.
    3. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    4. Maniadakis, Nikolaos & Thanassoulis, Emmanuel, 2004. "A cost Malmquist productivity index," European Journal of Operational Research, Elsevier, vol. 154(2), pages 396-409, April.
    5. Pavala Malar Kannan & Govindan Marthandan & Rathimala Kannan, 2021. "Modelling Efficiency of Electric Utilities Using Three Stage Virtual Frontier Data Envelopment Analysis with Variable Selection by Loads Method," Energies, MDPI, vol. 14(12), pages 1-21, June.
    6. Kumar, Surender, 2006. "Environmentally sensitive productivity growth: A global analysis using Malmquist-Luenberger index," Ecological Economics, Elsevier, vol. 56(2), pages 280-293, February.
    7. Jin-Peng Liu & Qian-Ru Yang & Lin He, 2017. "Total-Factor Energy Efficiency (TFEE) Evaluation on Thermal Power Industry with DEA, Malmquist and Multiple Regression Techniques," Energies, MDPI, vol. 10(7), pages 1-14, July.
    8. Zhigang Zhu & Xuping Zhang & Yujia Wang & Xiang Chen, 2021. "Energy Cost Performance of Thermal Power Industry in China Considering Regional Heterogeneity: A Meta-Frontier Cost Malmquist Productivity Decomposition Approach," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    9. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    10. Tao Li & Yunfen Guo & Liqi Yi & Tian Gao, 2022. "Environmental Performance Evaluation of New Type Thermal Power Enterprises Considering Carbon Peak and Neutrality," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    11. Wang, Chunhua & Cao, Xiaoyong & Mao, Jie & Qin, Ping, 2019. "The changes in coal intensity of electricity generation in Chinese coal-fired power plants," Energy Economics, Elsevier, vol. 80(C), pages 491-501.
    12. Xia, X.H. & Chen, Y.B. & Li, J.S. & Tasawar, H. & Alsaedi, A. & Chen, G.Q., 2014. "Energy regulation in China: Objective selection, potential assessment and responsibility sharing by partial frontier analysis," Energy Policy, Elsevier, vol. 66(C), pages 292-302.
    13. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    14. Yuan, Jiahai & Xu, Yan & Hu, Zheng & Zhao, Changhong & Xiong, Minpeng & Guo, Jingsheng, 2014. "Peak energy consumption and CO2 emissions in China," Energy Policy, Elsevier, vol. 68(C), pages 508-523.
    15. Fare, Rolf & Grosskopf, Shawna & Yaisawarng, Suthathip & Li, Sung Ko & Wang, Zhaoping, 1990. "Productivity growth in Illinois electric utilities," Resources and Energy, Elsevier, vol. 12(4), pages 383-398, December.
    16. G Tohidi & S Razavyan & S Tohidnia, 2012. "A global cost Malmquist productivity index using data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(1), pages 72-78, January.
    17. Xu, Jin-Hua & Fan, Ying & Yu, Song-Min, 2014. "Energy conservation and CO2 emission reduction in China's 11th Five-Year Plan: A performance evaluation," Energy Economics, Elsevier, vol. 46(C), pages 348-359.
    18. Fare, Rolf & Grosskopf, Shawna & Logan, James, 1983. "The relative efficiency of Illinois electric utilities," Resources and Energy, Elsevier, vol. 5(4), pages 349-367, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhigang Zhu & Xuping Zhang & Yujia Wang & Xiang Chen, 2021. "Energy Cost Performance of Thermal Power Industry in China Considering Regional Heterogeneity: A Meta-Frontier Cost Malmquist Productivity Decomposition Approach," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    2. Barnabé Walheer, 2018. "Cost Malmquist productivity index: an output-specific approach for group comparison," Journal of Productivity Analysis, Springer, vol. 49(1), pages 79-94, February.
    3. Bansal, Pooja & Kumar, Sunil & Mehra, Aparna & Gulati, Rachita, 2022. "Developing two dynamic Malmquist-Luenberger productivity indices: An illustrated application for assessing productivity performance of Indian banks," Omega, Elsevier, vol. 107(C).
    4. Reza Fallahnejad & Mohammad Reza Mozaffari & Peter Fernandes Wanke & Yong Tan, 2024. "Nash Bargaining Game Enhanced Global Malmquist Productivity Index for Cross-Productivity Index," Games, MDPI, vol. 15(1), pages 1-21, January.
    5. Adel Hatami-Marbini & Aliasghar Arabmaldar & John Otu Asu, 2022. "Robust productivity growth and efficiency measurement with undesirable outputs: evidence from the oil industry," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(4), pages 1213-1254, December.
    6. Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
    7. Du, Juan & Chen, Yao & Huang, Ying, 2018. "A Modified Malmquist-Luenberger Productivity Index: Assessing Environmental Productivity Performance in China," European Journal of Operational Research, Elsevier, vol. 269(1), pages 171-187.
    8. Walheer, Barnabé, 2018. "Disaggregation of the cost Malmquist productivity index with joint and output-specific inputs," Omega, Elsevier, vol. 75(C), pages 1-12.
    9. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    10. Barnabé Walheer, 2022. "Global Malmquist and cost Malmquist indexes for group comparison," Journal of Productivity Analysis, Springer, vol. 58(1), pages 75-93, August.
    11. Mei-Ying Huang & Jia-Ching Juo & Tsu-tan Fu, 2015. "Metafrontier cost Malmquist productivity index: an application to Taiwanese and Chinese commercial banks," Journal of Productivity Analysis, Springer, vol. 44(3), pages 321-335, December.
    12. Wang, Yi-Shu & Xie, Bai-Chen & Shang, Li-Feng & Li, Wen-Hua, 2013. "Measures to improve the performance of China’s thermal power industry in view of cost efficiency," Applied Energy, Elsevier, vol. 112(C), pages 1078-1086.
    13. Xie, Bai-Chen & Shang, Li-Feng & Yang, Si-Bo & Yi, Bo-Wen, 2014. "Dynamic environmental efficiency evaluation of electric power industries: Evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countrie," Energy, Elsevier, vol. 74(C), pages 147-157.
    14. Wei, Wei & Han, Ying & Abedin, Mohammad Zoynul & Ma, Jingjing & Chai, Shanglei, 2023. "Empirical study on the technical efficiency and total factor productivity of power industry: Evidence from Chinese provinces," Energy Economics, Elsevier, vol. 128(C).
    15. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    16. Yoonhwan Oh & Dong-hyun Oh & Jeong-Dong Lee, 2017. "A sequential global Malmquist productivity index: Productivity growth index for unbalanced panel data considering the progressive nature of technology," Empirical Economics, Springer, vol. 52(4), pages 1651-1674, June.
    17. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    18. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    19. Jia-Ching Juo & Yu-Hui Lin & Tsai-Chia Chen, 2015. "Productivity change of Taiwanese farmers’ credit unions: a nonparametric metafrontier Malmquist–Luenberger productivity indicator," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(1), pages 125-147, March.
    20. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:natres:v:49:y:2025:i:1:p:197-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1477-8947 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.