IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v349y2025i2d10.1007_s10479-020-03682-w.html
   My bibliography  Save this article

China’s power supply chain sustainability: an analysis of performance and technology gap

Author

Listed:
  • Jiasen Sun

    (Nanjing University of Aeronautics and Astronautics
    Soochow University)

  • Guo Li

    (Beijing Institute of Technology
    Beijing Institute of Technology
    Sustainable Development Research Institute for Economy and Society of Beijing)

  • Ming K. Lim

    (Coventry University)

Abstract

The power industry is a major source of carbon emissions in China and it is vital, therefore, to address the industry to promote carbon emission reduction. This study takes the power supply chain (PSC) in China, composed of coal-fired thermal power plants and downstream power grid enterprises as its primary research object. From the perspective of sustainable development, the study explores and analyzes the sustainable performance and technology heterogeneity of China’s provinces’ PSCs, proposing the two-system model to evaluate the sustainable performance, generation performance and sale performance of PSCs. In addition, to understand the technology level of PSC, this study applies the meta-frontier technique to analyze the technology heterogeneity of all PSCs across different regions. The proposed models are then applied to analyze the sustainable performance of China’s provincial PSCs. The empirical results demonstrate the market-oriented reform of the power industry in China played a role in promoting the development of power generation enterprises in China’s PSCs but had a limited effect on the power grid enterprises in the PSC. The study also shows that there are significant regional differences in the sustainable performance and technology of China’s PSC. Generally, PSCs in Eastern China have a high level of sustainable performance and technology, while the sustainable performance and technology of the PSCs in Central and Northeast China are relatively poor. Based on these empirical results, specific policy recommendations are presented to improve PSC’s sustainable performance and technology levels at government and enterprise levels.

Suggested Citation

  • Jiasen Sun & Guo Li & Ming K. Lim, 2025. "China’s power supply chain sustainability: an analysis of performance and technology gap," Annals of Operations Research, Springer, vol. 349(2), pages 849-877, June.
  • Handle: RePEc:spr:annopr:v:349:y:2025:i:2:d:10.1007_s10479-020-03682-w
    DOI: 10.1007/s10479-020-03682-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-020-03682-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-020-03682-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. You, Yan Q. & Jie, Tao, 2016. "A study of the operation efficiency and cost performance indices of power-supply companies in China based on a dynamic network slacks-based measure model," Omega, Elsevier, vol. 60(C), pages 85-97.
    2. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    3. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency: Some clarifications," European Journal of Operational Research, Elsevier, vol. 206(3), pages 702-702, November.
    4. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    5. Wade D. Cook & Juan Du & Joe Zhu, 2017. "Units invariant DEA when weight restrictions are present: ecological performance of US electricity industry," Annals of Operations Research, Springer, vol. 255(1), pages 323-346, August.
    6. Chen, Ci & Yan, Hong, 2011. "Network DEA model for supply chain performance evaluation," European Journal of Operational Research, Elsevier, vol. 213(1), pages 147-155, August.
    7. Feng Yang & Dexiang Wu & Liang Liang & Gongbing Bi & Desheng Wu, 2011. "Supply chain DEA: production possibility set and performance evaluation model," Annals of Operations Research, Springer, vol. 185(1), pages 195-211, May.
    8. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    9. Sueyoshi, Toshiyuki & Goto, Mika, 2001. "Slack-adjusted DEA for time series analysis: Performance measurement of Japanese electric power generation industry in 1984-1993," European Journal of Operational Research, Elsevier, vol. 133(2), pages 232-259, January.
    10. Ke Wang & Chia-Yen Lee & Jieming Zhang & Yi-Ming Wei, 2018. "Operational performance management of the power industry: a distinguishing analysis between effectiveness and efficiency," Annals of Operations Research, Springer, vol. 268(1), pages 513-537, September.
    11. Christopher O’Donnell & D. Rao & George Battese, 2008. "Metafrontier frameworks for the study of firm-level efficiencies and technology ratios," Empirical Economics, Springer, vol. 34(2), pages 231-255, March.
    12. Sebastian Lozano & Belarmino Adenso-Diaz, 2018. "Network DEA-based biobjective optimization of product flows in a supply chain," Annals of Operations Research, Springer, vol. 264(1), pages 307-323, May.
    13. Xu, Shaofeng & Chen, Wenying, 2006. "The reform of electricity power sector in the PR of China," Energy Policy, Elsevier, vol. 34(16), pages 2455-2465, November.
    14. Zhou, P. & Sun, Z.R. & Zhou, D.Q., 2014. "Optimal path for controlling CO2 emissions in China: A perspective of efficiency analysis," Energy Economics, Elsevier, vol. 45(C), pages 99-110.
    15. Liang Liang & Feng Yang & Wade Cook & Joe Zhu, 2006. "DEA models for supply chain efficiency evaluation," Annals of Operations Research, Springer, vol. 145(1), pages 35-49, July.
    16. Somayeh Soheilirad & Kannan Govindan & Abbas Mardani & Edmundas Kazimieras Zavadskas & Mehrbakhsh Nilashi & Norhayati Zakuan, 2018. "Application of data envelopment analysis models in supply chain management: a systematic review and meta-analysis," Annals of Operations Research, Springer, vol. 271(2), pages 915-969, December.
    17. Song, Malin & Peng, Jun & Wang, Jianlin & Zhao, Jiajia, 2018. "Environmental efficiency and economic growth of China: A Ray slack-based model analysis," European Journal of Operational Research, Elsevier, vol. 269(1), pages 51-63.
    18. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    19. Wang, Ke & Huang, Wei & Wu, Jie & Liu, Ying-Nan, 2014. "Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA," Omega, Elsevier, vol. 44(C), pages 5-20.
    20. Jie Wu & Panpan Xia & Qingyuan Zhu & Junfei Chu, 2019. "Measuring environmental efficiency of thermoelectric power plants: a common equilibrium efficient frontier DEA approach with fixed-sum undesirable output," Annals of Operations Research, Springer, vol. 275(2), pages 731-749, April.
    21. Monireh Jahani Sayyad Noveiri & Sohrab Kordrostami & Jie Wu & Alireza Amirteimoori, 2019. "Supply chains performance with undesirable factors and reverse flows: A DEA-based approach," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(1), pages 125-135, January.
    22. Guo, Chuanyin & Abbasi Shureshjani, Roohollah & Foroughi, Ali Asghar & Zhu, Joe, 2017. "Decomposition weights and overall efficiency in two-stage additive network DEA," European Journal of Operational Research, Elsevier, vol. 257(3), pages 896-906.
    23. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    24. Govindan, Kannan & Soleimani, Hamed & Kannan, Devika, 2015. "Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future," European Journal of Operational Research, Elsevier, vol. 240(3), pages 603-626.
    25. Guo Li & Wenling Liu & Zhaohua Wang & Mengqi Liu, 2017. "An empirical examination of energy consumption, behavioral intention, and situational factors: evidence from Beijing," Annals of Operations Research, Springer, vol. 255(1), pages 507-524, August.
    26. Fukuyama, Hirofumi & Matousek, Roman, 2017. "Modelling bank performance: A network DEA approach," European Journal of Operational Research, Elsevier, vol. 259(2), pages 721-732.
    27. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    28. Zhang, Ning & Choi, Yongrok, 2013. "Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis," Energy Economics, Elsevier, vol. 40(C), pages 549-559.
    29. Talluri, Srinivas & Narasimhan, Ram & Nair, Anand, 2006. "Vendor performance with supply risk: A chance-constrained DEA approach," International Journal of Production Economics, Elsevier, vol. 100(2), pages 212-222, April.
    30. George Battese & D. Rao & Christopher O'Donnell, 2004. "A Metafrontier Production Function for Estimation of Technical Efficiencies and Technology Gaps for Firms Operating Under Different Technologies," Journal of Productivity Analysis, Springer, vol. 21(1), pages 91-103, January.
    31. Saranga, Haritha & Moser, Roger, 2010. "Performance evaluation of purchasing and supply management using value chain DEA approach," European Journal of Operational Research, Elsevier, vol. 207(1), pages 197-205, November.
    32. Färe, Rolf & Grosskopf, Shawna, 2010. "Directional distance functions and slacks-based measures of efficiency," European Journal of Operational Research, Elsevier, vol. 200(1), pages 320-322, January.
    33. Cook, Wade D. & Zhu, Joe & Bi, Gongbing & Yang, Feng, 2010. "Network DEA: Additive efficiency decomposition," European Journal of Operational Research, Elsevier, vol. 207(2), pages 1122-1129, December.
    34. Li, Yongjun & Chen, Yao & Liang, Liang & Xie, Jianhui, 2012. "DEA models for extended two-stage network structures," Omega, Elsevier, vol. 40(5), pages 611-618.
    35. Yao Chen & Liang Liang & Feng Yang, 2006. "A DEA game model approach to supply chain efficiency," Annals of Operations Research, Springer, vol. 145(1), pages 5-13, July.
    36. Jinchao Li & Jinying Li & Fengting Zheng, 2014. "Unified Efficiency Measurement of Electric Power Supply Companies in China," Sustainability, MDPI, vol. 6(2), pages 1-15, February.
    37. Tseng, Ming-Lang & Lim, Ming K. & Wong, Wai-Peng & Chen, Yi-Chun & Zhan, Yuanzhu, 2018. "A framework for evaluating the performance of sustainable service supply chain management under uncertainty," International Journal of Production Economics, Elsevier, vol. 195(C), pages 359-372.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jilly Ayuningtias & Marimin Marimin & Agus Buono & Arif Imam Suroso, 2025. "An Integrated DEA–Porter Decision Support Framework for Enhancing Supply Chain Competitiveness in the Muslim Fashion Industry: Evidence from Indonesia," Logistics, MDPI, vol. 9(3), pages 1-30, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    2. Xiaohong Liu & Feng Yang & Jie Wu, 2020. "DEA considering technological heterogeneity and intermediate output target setting: the performance analysis of Chinese commercial banks," Annals of Operations Research, Springer, vol. 291(1), pages 605-626, August.
    3. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    4. Somayeh Soheilirad & Kannan Govindan & Abbas Mardani & Edmundas Kazimieras Zavadskas & Mehrbakhsh Nilashi & Norhayati Zakuan, 2018. "Application of data envelopment analysis models in supply chain management: a systematic review and meta-analysis," Annals of Operations Research, Springer, vol. 271(2), pages 915-969, December.
    5. Despotis, Dimitris K. & Koronakos, Gregory & Sotiros, Dimitris, 2016. "The “weak-link” approach to network DEA for two-stage processes," European Journal of Operational Research, Elsevier, vol. 254(2), pages 481-492.
    6. Ang, Sheng & Liu, Pei & Yang, Feng, 2020. "Intra-Organizational and inter-organizational resource allocation in two-stage network systems," Omega, Elsevier, vol. 91(C).
    7. AGRELL, Per & HATAMI-MARBINI, Adel, 2011. "Frontier-based performance analysis models for supply chain management; state of the art and research directions," LIDAM Discussion Papers CORE 2011069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Xiaohong Liu & Jiasen Sun & Feng Yang & Jie Wu, 2020. "How ownership structure affects bank deposits and loan efficiencies: an empirical analysis of Chinese commercial banks," Annals of Operations Research, Springer, vol. 290(1), pages 983-1008, July.
    9. Wang, Qunwei & Su, Bin & Zhou, Peng & Chiu, Ching-Ren, 2016. "Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach," Energy Economics, Elsevier, vol. 56(C), pages 475-482.
    10. Ilias Vlachos & Panagiotis D. Zervopoulos & Gang Cheng, 2024. "Supply chain performance evaluation using a network data envelopment analysis model with bias-corrected estimates," Annals of Operations Research, Springer, vol. 337(1), pages 343-395, June.
    11. Lim, Dong-Joon & Kim, Moon-Su, 2022. "Measuring dynamic efficiency with variable time lag effects," Omega, Elsevier, vol. 108(C).
    12. Li, Hai-ling & Zhu, Xue-hong & Chen, Jin-yu & Jiang, Fei-tao, 2019. "Environmental regulations, environmental governance efficiency and the green transformation of China's iron and steel enterprises," Ecological Economics, Elsevier, vol. 165(C), pages 1-1.
    13. Kaffash, Sepideh & Azizi, Roza & Huang, Ying & Zhu, Joe, 2020. "A survey of data envelopment analysis applications in the insurance industry 1993–2018," European Journal of Operational Research, Elsevier, vol. 284(3), pages 801-813.
    14. Yanni Yu & Yongrok Choi, 2015. "Measuring Environmental Performance Under Regional Heterogeneity in China: A Metafrontier Efficiency Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 375-388, October.
    15. Huang, Chin-wei & Ho, Foo Nin & Chiu, Yung-ho, 2014. "Measurement of tourist hotels׳ productive efficiency, occupancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan," Omega, Elsevier, vol. 48(C), pages 49-59.
    16. An, Qingxian & Chen, Haoxun & Xiong, Beibei & Wu, Jie & Liang, Liang, 2017. "Target intermediate products setting in a two-stage system with fairness concern," Omega, Elsevier, vol. 73(C), pages 49-59.
    17. Ang, Sheng & Chen, Chien-Ming, 2016. "Pitfalls of decomposition weights in the additive multi-stage DEA model," Omega, Elsevier, vol. 58(C), pages 139-153.
    18. Xie, Qiwei & Xu, Qifan & Chen, Lifan & Jin, Xi & Li, Siqi & Li, Yongjun, 2022. "Efficiency evaluation of China's listed commercial banks based on a multi-period leader-follower model," Omega, Elsevier, vol. 110(C).
    19. Mohammad Izadikhah & Reza Farzipoor Saen, 2023. "Developing a linear stochastic two-stage data envelopment analysis model for evaluating sustainability of supply chains: a case study in welding industry," Annals of Operations Research, Springer, vol. 322(1), pages 195-215, March.
    20. Ching-Chin Chern & Tzi-Yuan Chou & Bo Hsiao, 2016. "Assessing the efficiency of supply chain scheduling algorithms using data envelopment analysis," Information Systems and e-Business Management, Springer, vol. 14(4), pages 823-856, November.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:349:y:2025:i:2:d:10.1007_s10479-020-03682-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.