IDEAS home Printed from https://ideas.repec.org/p/biw/wpaper/100.html
   My bibliography  Save this paper

Operational and environmental performance in China¡¯s thermal power industry: Taking an effectiveness measure as complement to an efficiency measure

Author

Listed:
  • Ke Wang
  • Jieming Zhang
  • Yi-Ming Wei

    (Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology)

Abstract

The trend toward a more fiercely competitive and strictly environmentally regulated electricity market in several countries, including China has led to efforts by both industry and government to develop advanced performance evaluation models that adapt to new evaluation requirements. Traditional operational and environmental efficiency measures do not fully consider the influence of market competition and environmental regulations and, thus, are not sufficient for the thermal power industry to evaluate its operational performance with respect to specific marketing goals (operational effectiveness) and its environmental performance with respect to specific emissions reduction targets (environmental effectiveness). As a complement to an operational efficiency measure, an operational effectiveness measure not only reflects the capacity of an electricity production system to increase its electricity generation through the improvement of operational efficiency, but it also reflects the system¡¯s capability to adjust its electricity generation activities to match electricity demand. In addition, as a complement to an environmental efficiency measure, an environmental effectiveness measure not only reflects the capacity of an electricity production system to decrease its pollutant emissions through the improvement of environmental efficiency, but it also reflects the system¡¯s capability to adjust its emissions abatement activities to fulfill environmental regulations. Furthermore, an environmental effectiveness measure helps the government regulator to verify the rationality of its emissions reduction targets assigned to the thermal power industry. Several newly developed effectiveness measurements based on data envelopment analysis (DEA) were utilized in this study to evaluate the operational and environmental performance of the thermal power industry in China during 2006-2013. Both efficiency and effectiveness were evaluated from the three perspectives of operational, environmental, and joint adjustments to each electricity production system. The operational and environmental performance changes over time were also captured through an effectiveness measure based on the global Malmquist productivity index. Our empirical results indicated that the performance of China¡¯s thermal power industry experienced significant progress during the study period and that policies regarding the development and regulation of the thermal power industry yielded the expected effects. However, the emissions reduction targets assigned to China¡¯s thermal power industry are loose and conservative.

Suggested Citation

  • Ke Wang & Jieming Zhang & Yi-Ming Wei, 2017. "Operational and environmental performance in China¡¯s thermal power industry: Taking an effectiveness measure as complement to an efficiency measure," CEEP-BIT Working Papers 100, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
  • Handle: RePEc:biw:wpaper:100
    as

    Download full text from publisher

    File URL: http://ceep.bit.edu.cn/docs/2018-10/20181012074938803429.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azadeh, A. & Ghaderi, S.F. & Maghsoudi, A., 2008. "Location optimization of solar plants by an integrated hierarchical DEA PCA approach," Energy Policy, Elsevier, vol. 36(10), pages 3993-4004, October.
    2. Timo Kuosmanen, 2005. "Weak Disposability in Nonparametric Production Analysis with Undesirable Outputs," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 1077-1082.
    3. Chen, Tser-yieth, 2002. "An assessment of technical efficiency and cross-efficiency in Taiwan's electricity distribution sector," European Journal of Operational Research, Elsevier, vol. 137(2), pages 421-433, March.
    4. Wang, Ke & Wei, Yi-Ming, 2016. "Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator," Energy Economics, Elsevier, vol. 54(C), pages 50-59.
    5. Welch, Eric & Barnum, Darold, 2009. "Joint environmental and cost efficiency analysis of electricity generation," Ecological Economics, Elsevier, vol. 68(8-9), pages 2336-2343, June.
    6. Pastor, Jesus T. & Lovell, C.A. Knox, 2005. "A global Malmquist productivity index," Economics Letters, Elsevier, vol. 88(2), pages 266-271, August.
    7. Ke Wang, 2016. "Potential carbon emission abatement cost recovery from carbon emission trading in China: an estimation of industry sector," CEEP-BIT Working Papers 94, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    8. IGNATIUS, Joshua & GHASEMI, M.-R. & ZHANG, Feng & EMROUZNEJAD, Ali & HATAMI-MARBINI, Adel, 2016. "Carbon Efficiency Evaluation: An Analytical Framework Using Fuzzy DEA," LIDAM Reprints CORE 2735, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    9. Ke Wang & Yujiao Xian & Yi-Ming Wei & Zhimin Huang, 2016. "Sources of carbon productivity change: A decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function," CEEP-BIT Working Papers 91, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    10. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    11. Rolf Färe & Shawna Grosskopf, 2003. "Nonparametric Productivity Analysis with Undesirable Outputs: Comment," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(4), pages 1070-1074.
    12. Sueyoshi, Toshiyuki & Goto, Mika, 2001. "Slack-adjusted DEA for time series analysis: Performance measurement of Japanese electric power generation industry in 1984-1993," European Journal of Operational Research, Elsevier, vol. 133(2), pages 232-259, January.
    13. Shrivastava, Naveen & Sharma, Seema & Chauhan, Kavita, 2012. "Efficiency assessment and benchmarking of thermal power plants in India," Energy Policy, Elsevier, vol. 40(C), pages 159-176.
    14. Yu, Ming-Miin & Lin, Erwin T.J., 2008. "Efficiency and effectiveness in railway performance using a multi-activity network DEA model," Omega, Elsevier, vol. 36(6), pages 1005-1017, December.
    15. R. Färe & S. Grosskopf & G. Whittaker, 2013. "Directional output distance functions: endogenous directions based on exogenous normalization constraints," Journal of Productivity Analysis, Springer, vol. 40(3), pages 267-269, December.
    16. Lee, Chia-Yen & Johnson, Andrew L., 2014. "Proactive data envelopment analysis: Effective production and capacity expansion in stochastic environments," European Journal of Operational Research, Elsevier, vol. 232(3), pages 537-548.
    17. Mou, Dunguo, 2014. "Understanding China’s electricity market reform from the perspective of the coal-fired power disparity," Energy Policy, Elsevier, vol. 74(C), pages 224-234.
    18. Ke Wang & Chia-Yen Lee & Jieming Zhang & Yi-Ming Wei, 2018. "Operational performance management of the power industry: a distinguishing analysis between effectiveness and efficiency," Annals of Operations Research, Springer, vol. 268(1), pages 513-537, September.
    19. Bi, Gong-Bing & Song, Wen & Zhou, P. & Liang, Liang, 2014. "Does environmental regulation affect energy efficiency in China's thermal power generation? Empirical evidence from a slacks-based DEA model," Energy Policy, Elsevier, vol. 66(C), pages 537-546.
    20. Wang, Ke & Wei, Yi-Ming & Zhang, Xian, 2012. "A comparative analysis of China’s regional energy and emission performance: Which is the better way to deal with undesirable outputs?," Energy Policy, Elsevier, vol. 46(C), pages 574-584.
    21. Sueyoshi, Toshiyuki & Goto, Mika & Ueno, Takahiro, 2010. "Performance analysis of US coal-fired power plants by measuring three DEA efficiencies," Energy Policy, Elsevier, vol. 38(4), pages 1675-1688, April.
    22. Ignatius, Joshua & Ghasemi, M.-R. & Zhang, Feng & Emrouznejad, Ali & Hatami-Marbini, Adel, 2016. "Carbon efficiency evaluation: An analytical framework using fuzzy DEA," European Journal of Operational Research, Elsevier, vol. 253(2), pages 428-440.
    23. Chia-Yen Lee & Andrew Johnson, 2015. "Effective production: measuring of the sales effect using data envelopment analysis," Annals of Operations Research, Springer, vol. 235(1), pages 453-486, December.
    24. Ma, Chunbo & Zhao, Xiaoli, 2015. "China's electricity market restructuring and technology mandates: Plant-level evidence for changing operational efficiency," Energy Economics, Elsevier, vol. 47(C), pages 227-237.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    2. Long, Xingle & Wu, Chao & Zhang, Jijian & Zhang, Jing, 2018. "Environmental efficiency for 192 thermal power plants in the Yangtze River Delta considering heterogeneity: A metafrontier directional slacks-based measure approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3962-3971.
    3. Opazo-Basáez, Marco & Monroy-Osorio, Juan Carlos & Marić, Josip, 2024. "Evaluating the effect of green technological innovations on organizational and environmental performance: A treble innovation approach," Technovation, Elsevier, vol. 129(C).
    4. Meng, Ming & Pang, Tingting, 2022. "Operational efficiency analysis of China's electric power industry using a dynamic network slack-based measure model," Energy, Elsevier, vol. 251(C).
    5. Lin, Hongbo & Zhang, Xiaoling & Chen, Zhenling & Zheng, Heyun, 2020. "Estimating the potential output and output gap for China's coal cities with pollutants reduction," Resources Policy, Elsevier, vol. 68(C).
    6. Feihua Huang & Yue Du & Debao Hu & Bin Zhang, 2021. "Sustainable Performance Analysis of Power Supply Chain System from the Perspective of Technology and Management," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    7. Li, Feng & Zhang, Danlu & Zhang, Jinyu & Kou, Gang, 2022. "Measuring the energy production and utilization efficiency of Chinese thermal power industry with the fixed-sum carbon emission constraint," International Journal of Production Economics, Elsevier, vol. 252(C).
    8. Zhigang Zhu & Xuping Zhang & Yujia Wang & Xiang Chen, 2021. "Energy Cost Performance of Thermal Power Industry in China Considering Regional Heterogeneity: A Meta-Frontier Cost Malmquist Productivity Decomposition Approach," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    9. Qingyou Yan & Yaxian Wang & Tomas Baležentis & Yikai Sun & Dalia Streimikiene, 2018. "Energy-Related CO 2 Emission in China’s Provincial Thermal Electricity Generation: Driving Factors and Possibilities for Abatement," Energies, MDPI, vol. 11(5), pages 1-25, April.
    10. Zhang, Yijun & Song, Yi, 2020. "Unified efficiency of coal mining enterprises in China: An analysis based on meta-frontier non-radial directional distance functions," Resources Policy, Elsevier, vol. 65(C).
    11. Sueyoshi, Toshiyuki & Goto, Mika & Wang, Derek, 2017. "Malmquist index measurement for sustainability enhancement in Chinese municipalities and provinces," Energy Economics, Elsevier, vol. 67(C), pages 554-571.
    12. Sueyoshi, Toshiyuki & Yuan, Yan, 2017. "Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention," Energy Economics, Elsevier, vol. 66(C), pages 154-166.
    13. Wang, Yongpei & Yan, Weilong & Komonpipat, Supak, 2019. "How does the capacity utilization of thermal power generation affect pollutant emissions? Evidence from the panel data of China's provinces," Energy Policy, Elsevier, vol. 132(C), pages 440-451.
    14. Xuemei Jiang & Huijuan Wang & Yan Xia, 2020. "Economic structural change, renewable energy development, and carbon dioxide emissions in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1345-1362, October.
    15. Yu, Yanni & Qian, Tao & Du, Limin, 2017. "Carbon productivity growth, technological innovation, and technology gap change of coal-fired power plants in China," Energy Policy, Elsevier, vol. 109(C), pages 479-487.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Ke & Wei, Yi-Ming & Huang, Zhimin, 2018. "Environmental efficiency and abatement efficiency measurements of China's thermal power industry: A data envelopment analysis based materials balance approach," European Journal of Operational Research, Elsevier, vol. 269(1), pages 35-50.
    2. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    3. Ke Wang & Chia-Yen Lee & Jieming Zhang & Yi-Ming Wei, 2018. "Operational performance management of the power industry: a distinguishing analysis between effectiveness and efficiency," Annals of Operations Research, Springer, vol. 268(1), pages 513-537, September.
    4. Ke Wang & Yi-Ming Wei & Zhimin Huang, 2017. "Environmental efficiency and abatement efficiency measurements of China¡¯s thermal power industry: A data envelopment analysis based materials balance approach," CEEP-BIT Working Papers 108, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    5. Sueyoshi, Toshiyuki & Goto, Mika, 2015. "Environmental assessment on coal-fired power plants in U.S. north-east region by DEA non-radial measurement," Energy Economics, Elsevier, vol. 50(C), pages 125-139.
    6. Ke Wang & Zhifu Mi & Yi‐Ming Wei, 2019. "Will Pollution Taxes Improve Joint Ecological and Economic Efficiency of Thermal Power Industry in China?: A DEA‐Based Materials Balance Approach," Journal of Industrial Ecology, Yale University, vol. 23(2), pages 389-401, April.
    7. Ke Wang & Yujiao Xian & Chia-Yen Lee & Yi-Ming Wei & Zhimin Huang, 2019. "On selecting directions for directional distance functions in a non-parametric framework: a review," Annals of Operations Research, Springer, vol. 278(1), pages 43-76, July.
    8. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    9. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    10. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    11. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    12. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    13. Qingyou Yan & Xu Wang & Tomas Baležentis & Dalia Streimikiene, 2018. "Energy–economy–environmental (3E) performance of Chinese regions based on the data envelopment analysis model with mixed assumptions on disposability," Energy & Environment, , vol. 29(5), pages 664-684, August.
    14. Jian Chai & Wenyue Fan & Jing Han, 2019. "Does the Energy Efficiency of Power Companies Affect Their Industry Status? A DEA Analysis of Listed Companies in Thermal Power Sector," Sustainability, MDPI, vol. 12(1), pages 1-12, December.
    15. Sueyoshi, Toshiyuki & Yuan, Yan, 2017. "Social sustainability measured by intermediate approach for DEA environmental assessment: Chinese regional planning for economic development and pollution prevention," Energy Economics, Elsevier, vol. 66(C), pages 154-166.
    16. Chia-Yen Lee, 2017. "Directional marginal productivity: a foundation of meta-data envelopment analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(5), pages 544-555, May.
    17. Lee, Chia-Yen, 2014. "Meta-data envelopment analysis: Finding a direction towards marginal profit maximization," European Journal of Operational Research, Elsevier, vol. 237(1), pages 207-216.
    18. Sahoo, Nihar R. & Mohapatra, Pratap K.J. & Sahoo, Biresh K. & Mahanty, Biswajit, 2017. "Rationality of energy efficiency improvement targets under the PAT scheme in India – A case of thermal power plants," Energy Economics, Elsevier, vol. 66(C), pages 279-289.
    19. Sueyoshi, Toshiyuki & Goto, Mika, 2016. "Undesirable congestion under natural disposability and desirable congestion under managerial disposability in U.S. electric power industry measured by DEA environmental assessment," Energy Economics, Elsevier, vol. 55(C), pages 173-188.
    20. Ke Wang & Yujiao Xian & Yi-Ming Wei & Zhimin Huang, 2016. "Sources of carbon productivity change: A decomposition and disaggregation analysis based on global Luenberger productivity indicator and endogenous directional distance function," CEEP-BIT Working Papers 91, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.

    More about this item

    Keywords

    Efficiency; Environmental effectiveness; Joint performance; Operational effectiveness;
    All these keywords.

    JEL classification:

    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:biw:wpaper:100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zhi-Fu Mi (email available below). General contact details of provider: https://edirc.repec.org/data/cebitcn.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.