IDEAS home Printed from
   My bibliography  Save this article

Proactive data envelopment analysis: Effective production and capacity expansion in stochastic environments


  • Lee, Chia-Yen
  • Johnson, Andrew L.


Demand fluctuations that cause variations in output levels will affect a firm’s technical inefficiency. To assess this demand effect, a demand-truncated production function is developed and an “effectiveness” measure is proposed. Often a firm can adjust some input resources influencing the output level in an attempt to match demand. We propose a short-run capacity planning method, termed proactive data envelopment analysis, which quantifies the effectiveness of a firm’s production system under demand uncertainty. Using a stochastic programming DEA approach, we improve upon short-run capacity expansion planning models by accounting for the decreasing marginal benefit of inputs and estimating the expected value of effectiveness, given demand. The law of diminishing marginal returns is an important property of production function; however, constant marginal productivity is usually assumed for capacity expansion problems resulting in biased capacity estimates. Applying the proposed model in an empirical study of convenience stores in Japan demonstrates the actionable advice the model provides about the levels of variable inputs in uncertain demand environments. We conclude that the method is most suitable for characterizing production systems with perishable goods or service systems that cannot store inventories.

Suggested Citation

  • Lee, Chia-Yen & Johnson, Andrew L., 2014. "Proactive data envelopment analysis: Effective production and capacity expansion in stochastic environments," European Journal of Operational Research, Elsevier, vol. 232(3), pages 537-548.
  • Handle: RePEc:eee:ejores:v:232:y:2014:i:3:p:537-548
    DOI: 10.1016/j.ejor.2013.07.043

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Jati Sengupta, 2000. "Efficiency analysis by stochastic data envelopment analysis," Applied Economics Letters, Taylor & Francis Journals, vol. 7(6), pages 379-383.
    2. Lee, Chia-Yen & Johnson, Andrew L., 2012. "Two-dimensional efficiency decomposition to measure the demand effect in productivity analysis," European Journal of Operational Research, Elsevier, vol. 216(3), pages 584-593.
    3. Kao, Chiang & Liu, Shiang-Tai, 2009. "Stochastic data envelopment analysis in measuring the efficiency of Taiwan commercial banks," European Journal of Operational Research, Elsevier, vol. 196(1), pages 312-322, July.
    4. Timo Kuosmanen, 2008. "Representation theorem for convex nonparametric least squares," Econometrics Journal, Royal Economic Society, vol. 11(2), pages 308-325, July.
    5. Timo Kuosmanen, 2004. "Efficient Diversification According to Stochastic Dominance Criteria," Management Science, INFORMS, vol. 50(10), pages 1390-1406, October.
    6. Bruni, M.E. & Conforti, D. & Beraldi, P. & Tundis, E., 2009. "Probabilistically constrained models for efficiency and dominance in DEA," International Journal of Production Economics, Elsevier, vol. 117(1), pages 219-228, January.
    7. O. B. Olesen & N. C. Petersen, 1995. "Chance Constrained Efficiency Evaluation," Management Science, INFORMS, vol. 41(3), pages 442-457, March.
    8. William W. Cooper & Kyung Sam Park & Gang Yu, 1999. "IDEA and AR-IDEA: Models for Dealing with Imprecise Data in DEA," Management Science, INFORMS, vol. 45(4), pages 597-607, April.
    9. Branda, Martin, 2013. "Diversification-consistent data envelopment analysis with general deviation measures," European Journal of Operational Research, Elsevier, vol. 226(3), pages 626-635.
    10. Lamb, John D. & Tee, Kai-Hong, 2012. "Data envelopment analysis models of investment funds," European Journal of Operational Research, Elsevier, vol. 216(3), pages 687-696.
    11. Timo Kuosmanen & Mika Kortelainen, 2012. "Stochastic non-smooth envelopment of data: semi-parametric frontier estimation subject to shape constraints," Journal of Productivity Analysis, Springer, vol. 38(1), pages 11-28, August.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Ke Wang & Chia-Yen Lee & Jieming Zhang & Yi-Ming Wei, 2018. "Operational performance management of the power industry: a distinguishing analysis between effectiveness and efficiency," Annals of Operations Research, Springer, vol. 268(1), pages 513-537, September.
    2. Ke Wang & Jieming Zhang & Yi-Ming Wei, 2017. "Operational and environmental performance in China¡¯s thermal power industry: Taking an effectiveness measure as complement to an efficiency measure," CEEP-BIT Working Papers 100, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    3. repec:eee:ejores:v:273:y:2019:i:1:p:390-400 is not listed on IDEAS
    4. Lee, Chia-Yen, 2014. "Meta-data envelopment analysis: Finding a direction towards marginal profit maximization," European Journal of Operational Research, Elsevier, vol. 237(1), pages 207-216.
    5. Chia-Yen Lee & Andrew Johnson, 2015. "Effective production: measuring of the sales effect using data envelopment analysis," Annals of Operations Research, Springer, vol. 235(1), pages 453-486, December.
    6. repec:spr:joptap:v:164:y:2015:i:2:d:10.1007_s10957-014-0557-z is not listed on IDEAS
    7. Lee, Chia-Yen, 2016. "Most productive scale size versus demand fulfillment: A solution to the capacity dilemma," European Journal of Operational Research, Elsevier, vol. 248(3), pages 954-962.
    8. repec:eee:transa:v:106:y:2017:i:c:p:197-214 is not listed on IDEAS


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:232:y:2014:i:3:p:537-548. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.