IDEAS home Printed from https://ideas.repec.org/r/ecb/ecbwps/2006680.html
   My bibliography  Save this item

Comparing alternative predictors based on large-panel factor models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
  2. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
  3. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
  4. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
  5. Derek Bunn, Julien Chevallier, Yannick Le Pen, and Benoit Sevi, 2017. "Fundamental and Financial Influences on the Co-movement of Oil and Gas Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  6. Yannick Le Pen & Benoît Sévi, 2013. "Futures trading and the excess comovement of commodity prices," Post-Print hal-01613916, HAL.
  7. Irma Hindrayanto & Siem Jan Koopman & Jasper de Winter, 2014. "Nowcasting and Forecasting Economic Growth in the Euro Area using Principal Components," Tinbergen Institute Discussion Papers 14-113/III, Tinbergen Institute.
  8. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2009. "A Robust Criterion for Determining the Number of Factors in Approximate Factor Models," Working Papers ECARES 2009_023, ULB -- Universite Libre de Bruxelles.
  9. Antonello D'Agostino & Domenico Giannone & Paolo Surico, 2005. "(Un)Predictability and Macroeconomic Stability," Macroeconomics 0510024, University Library of Munich, Germany.
  10. GUO-FITOUSSI, Liang, 2013. "A Comparison of the Finite Sample Properties of Selection Rules of Factor Numbers in Large Datasets," MPRA Paper 50005, University Library of Munich, Germany.
  11. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
  12. Massimiliano Marcellino & Christian Schumacher, 2008. "Factor-MIDAS for Now- and Forecasting with Ragged-Edge Data: A Model Comparison for German GDP1," Working Papers 333, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
  13. Jiang, Yu & Guo, Yongji & Zhang, Yihao, 2017. "Forecasting China's GDP growth using dynamic factors and mixed-frequency data," Economic Modelling, Elsevier, vol. 66(C), pages 132-138.
  14. Breitung, Jörg & Eickmeier, Sandra, 2014. "Analyzing business and financial cycles using multi-level factor models," Discussion Papers 11/2014, Deutsche Bundesbank.
  15. Lyu, Yifei & Nie, Jun & Yang, Shu-Kuei X., 2021. "Forecasting US economic growth in downturns using cross-country data," Economics Letters, Elsevier, vol. 198(C).
  16. Christian Schulz, 2007. "Forecasting economic growth for Estonia : application of common factor methodologies," Bank of Estonia Working Papers 2007-09, Bank of Estonia, revised 04 Sep 2007.
  17. Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
  18. Tommaso Proietti, 2016. "On the Selection of Common Factors for Macroeconomic Forecasting," Advances in Econometrics, in: Dynamic Factor Models, volume 35, pages 593-628, Emerald Group Publishing Limited.
  19. Stock, James H. & Watson, Mark, 2011. "Dynamic Factor Models," Scholarly Articles 28469541, Harvard University Department of Economics.
  20. repec:dau:papers:123456789/11382 is not listed on IDEAS
  21. Van Nieuwenhuyze, Christophe & Benk, Szilard & Rünstler, Gerhard & Cristadoro, Riccardo & Den Reijer, Ard & Jakaitiene, Audrone & Jelonek, Piotr & Rua, António & Ruth, Karsten & Barhoumi, Karim, 2008. "Short-term forecasting of GDP using large monthly datasets: a pseudo real-time forecast evaluation exercise," Occasional Paper Series 84, European Central Bank.
  22. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
  23. Evžen Kočenda & Karen Poghosyan, 2020. "Nowcasting Real GDP Growth: Comparison between Old and New EU Countries," Eastern European Economics, Taylor & Francis Journals, vol. 58(3), pages 197-220, May.
  24. Matteo Luciani & Libero Monteforte, 2012. "Uncertainty and Heterogeneity in factor models forecasting," Working Papers 5, Department of the Treasury, Ministry of the Economy and of Finance.
  25. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
  26. Jokubaitis, Saulius & Celov, Dmitrij & Leipus, Remigijus, 2021. "Sparse structures with LASSO through principal components: Forecasting GDP components in the short-run," International Journal of Forecasting, Elsevier, vol. 37(2), pages 759-776.
  27. repec:ipg:wpaper:2013-019 is not listed on IDEAS
  28. Ard Reijer, 2013. "Forecasting Dutch GDP and inflation using alternative factor model specifications based on large and small datasets," Empirical Economics, Springer, vol. 44(2), pages 435-453, April.
  29. Marlene Amstad & Ye Huan & Guonan Ma, 2014. "Developing an underlying inflation gauge for China," BIS Working Papers 465, Bank for International Settlements.
  30. Amstad, Marlene & Ye, Huan & Ma, Guonan, 2018. "Developing an underlying inflation gauge for China," BOFIT Discussion Papers 11/2018, Bank of Finland Institute for Emerging Economies (BOFIT).
  31. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
  32. Alessandro Giovannelli, 2012. "Nonlinear Forecasting Using Large Datasets: Evidences on US and Euro Area Economies," CEIS Research Paper 255, Tor Vergata University, CEIS, revised 08 Nov 2012.
  33. Hanan Naser, 2015. "Estimating and forecasting Bahrain quarterly GDP growth using simple regression and factor-based methods," Empirical Economics, Springer, vol. 49(2), pages 449-479, September.
  34. Luca Di Bonaventura & Mario Forni & Francesco Pattarin, 2018. "The Forecasting Performance of Dynamic Factor Models with Vintage Data," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0070, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
  35. Elena Deryugina & Alexey Ponomarenko, 2021. "Explaining the lead–lag pattern in the money–inflation relationship: a microsimulation approach," Journal of Evolutionary Economics, Springer, vol. 31(4), pages 1113-1128, September.
  36. Marc Hallin & Roman Liska, 2008. "Dynamic Factors in the Presence of Block Structure," Economics Working Papers ECO2008/22, European University Institute.
  37. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
  38. Max Hanisch, 2017. "US Monetary Policy and the Euro Area," Discussion Papers of DIW Berlin 1701, DIW Berlin, German Institute for Economic Research.
  39. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
  40. Asger Lunde & Miha Torkar, 2020. "Including news data in forecasting macro economic performance of China," Computational Management Science, Springer, vol. 17(4), pages 585-611, December.
  41. Allayioti, Anastasia & Venditti, Fabrizio, 2024. "The role of comovement and time-varying dynamics in forecasting commodity prices," Working Paper Series 2901, European Central Bank.
  42. Rusnák, Marek, 2016. "Nowcasting Czech GDP in real time," Economic Modelling, Elsevier, vol. 54(C), pages 26-39.
  43. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," MPRA Paper 39452, University Library of Munich, Germany.
  44. Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
  45. Jan J. J. Groen & George Kapetanios, 2009. "Model selection criteria for factor-augmented regressions," Staff Reports 363, Federal Reserve Bank of New York.
  46. Kirstin Hubrich & Guenter Beck & Massimiliano Marcellino, 2000. "Regional Inflation Dynamics within and across Euro Area Countries and a Comparison with the US," Regional and Urban Modeling 283600037, EcoMod.
  47. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
  48. Kyle E. Binder & Mohsen Pourahmadi & James W. Mjelde, 2020. "The role of temporal dependence in factor selection and forecasting oil prices," Empirical Economics, Springer, vol. 58(3), pages 1185-1223, March.
  49. Hanisch, Max, 2019. "US monetary policy and the euro area," Journal of Banking & Finance, Elsevier, vol. 100(C), pages 77-96.
  50. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
  51. Matteo Luciani & David Veredas, "undated". "A simple model for vast panels of volatilities," ULB Institutional Repository 2013/136239, ULB -- Universite Libre de Bruxelles.
  52. repec:dau:papers:123456789/11692 is not listed on IDEAS
  53. Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019. "Predictive regressions under asymmetric loss: Factor augmentation and model selection," International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
  54. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
  55. repec:ipg:wpaper:2014-414 is not listed on IDEAS
  56. Darracq Pariès, Matthieu & Maurin, Laurent, 2008. "The role of country-specific trade and survey data in forecasting euro area manufacturing production: perspective from large panel factor models," Working Paper Series 894, European Central Bank.
  57. Matteo Luciani & Lorenzo Ricci, 2014. "Nowcasting Norway," International Journal of Central Banking, International Journal of Central Banking, vol. 10(4), pages 215-248, December.
  58. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation and Inference of Large Approximate Dynamic Factor Models via the EM algorithm," Papers 1910.03821, arXiv.org, revised Sep 2024.
  59. Matteo Barigozzi & Matteo Luciani, 2017. "Common Factors, Trends, and Cycles in Large Datasets," Finance and Economics Discussion Series 2017-111, Board of Governors of the Federal Reserve System (U.S.).
  60. repec:ipg:wpaper:19 is not listed on IDEAS
  61. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
  62. Jansen, W. Jos & Jin, Xiaowen & de Winter, Jasper M., 2016. "Forecasting and nowcasting real GDP: Comparing statistical models and subjective forecasts," International Journal of Forecasting, Elsevier, vol. 32(2), pages 411-436.
  63. Dimitar EFTIMOSKI, 2019. "Improving Short-Term Forecasting of Macedonian GDP: Comparing the Factor Model with the Macroeconomic Structural Equation Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 32-53, June.
  64. James H. Stock & Mark W. Watson, 2008. "Phillips curve inflation forecasts," Conference Series ; [Proceedings], Federal Reserve Bank of Boston.
  65. Matteo Barigozzi & Matteo Luciani, 2019. "Quasi Maximum Likelihood Estimation of Non-Stationary Large Approximate Dynamic Factor Models," Papers 1910.09841, arXiv.org.
  66. Buss, Ginters, 2010. "A note on GDP now-/forecasting with dynamic versus static factor models along a business cycle," MPRA Paper 22147, University Library of Munich, Germany.
  67. Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.
  68. Schnatz, Bernd, 2006. "Is reversion to PPP in euro exchange rates non-linear?," Working Paper Series 682, European Central Bank.
  69. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
  70. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
  71. Jennifer Castle & David Hendry & Oleg Kitov, 2013. "Forecasting and Nowcasting Macroeconomic Variables: A Methodological Overview," Economics Series Working Papers 674, University of Oxford, Department of Economics.
  72. Matteo Barigozzi & Marco Capasso, 2007. "A Multivariate Perspective for Modeling and Forecasting Inflation's Conditional Mean and Variance," LEM Papers Series 2007/21, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  73. Viktors Ajevskis & Gundars Davidsons, 2008. "Dynamic Factor Models in Forecasting Latvia's Gross Domestic Product," Working Papers 2008/02, Latvijas Banka.
  74. Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised May 2024.
  75. Schumacher Christian, 2011. "Forecasting with Factor Models Estimated on Large Datasets: A Review of the Recent Literature and Evidence for German GDP," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 231(1), pages 28-49, February.
  76. Liebermann, Joelle, 2010. "Real-time nowcasting of GDP: Factor model versus professional forecasters," MPRA Paper 28819, University Library of Munich, Germany.
  77. Christian Schulz, 2008. "Forecasting economic activity for Estonia : The application of dynamic principal component analyses," Bank of Estonia Working Papers 2008-02, Bank of Estonia, revised 30 Oct 2008.
  78. Guido Bulligan & Massimiliano Marcellino & Fabrizio Venditti, 2012. "Forecasting economic activity with higher frequency targeted predictors," Temi di discussione (Economic working papers) 847, Bank of Italy, Economic Research and International Relations Area.
  79. Marco J. Lombardi & Philipp Maier, 2010. "‘Lean’ versus ‘Rich’ Data Sets: Forecasting during the Great Moderation and the Great Recession," Staff Working Papers 10-37, Bank of Canada.
  80. Aiolfi, Marco & Catão, Luis A.V. & Timmermann, Allan, 2011. "Common factors in Latin America's business cycles," Journal of Development Economics, Elsevier, vol. 95(2), pages 212-228, July.
  81. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
  82. Xisong Jin & Francisco Nadal De Simone, 2015. "Investment funds? vulnerabilities: A tail-risk dynamic CIMDO approach," BCL working papers 95, Central Bank of Luxembourg.
  83. Hallin, Marc & Liska, Roman, 2011. "Dynamic factors in the presence of blocks," Journal of Econometrics, Elsevier, vol. 163(1), pages 29-41, July.
  84. G. Rünstler & K. Barhoumi & S. Benk & R. Cristadoro & A. Den Reijer & A. Jakaitiene & P. Jelonek & A. Rua & K. Ruth & C. Van Nieuwenhuyze, 2009. "Short-term forecasting of GDP using large datasets: a pseudo real-time forecast evaluation exercise," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(7), pages 595-611.
  85. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
  86. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
  87. Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010. "Large Bayesian vector auto regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
  88. repec:zbw:bofitp:2018_011 is not listed on IDEAS
  89. Sara Serra & João Quelhas, 2023. "The inflation process in Portugal: the role of price spillovers," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
  90. Rochelle M. Edge & Refet S. Gürkaynak, 2011. "How useful are estimated DSGE model forecasts?," Finance and Economics Discussion Series 2011-11, Board of Governors of the Federal Reserve System (U.S.).
  91. Jason Angelopoulos, 2017. "Creating and assessing composite indicators: Dynamic applications for the port industry and seaborne trade," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 19(1), pages 126-159, March.
  92. Domenico Giannone & Lucrezia Reichlin & David Small, 2008. "Nowcasting: the real time informational content of macroeconomic data releases," ULB Institutional Repository 2013/6409, ULB -- Universite Libre de Bruxelles.
  93. D. Tutberidze & D. Japaridze, 2017. "Macroeconomic Forecasting Using Bayesian Vector Autoregressive Approach," Вестник Киевского национального университета имени Тараса Шевченко. Экономика., Socionet;Киевский национальный университет имени Тараса Шевченко, vol. 2(191), pages 42-49.
  94. F. Della Marra, 2017. "A forecasting performance comparison of dynamic factor models based on static and dynamic methods," Economics Department Working Papers 2017-ME01, Department of Economics, Parma University (Italy).
  95. Hanisch, Max & Kempa, Bernd, 2017. "The international transmission channels of US supply and demand shocks: Evidence from a non-stationary dynamic factor model for the G7 countries," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 70-88.
  96. Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
  97. Martina Hengge & Seton Leonard, 2017. "Factor Models for Non-Stationary Series: Estimates of Monthly U.S. GDP," IHEID Working Papers 13-2017, Economics Section, The Graduate Institute of International Studies.
  98. Aðalheiður Ó. Guðlaugsdóttir & Lilja S. Kro, 2018. "The common component of the CPI - A trendy measure of Icelandic underlying inflation," Economics wp78, Department of Economics, Central bank of Iceland.
  99. Bulligan, Guido & Marcellino, Massimiliano & Venditti, Fabrizio, 2015. "Forecasting economic activity with targeted predictors," International Journal of Forecasting, Elsevier, vol. 31(1), pages 188-206.
  100. Andrea Nobili, 2009. "Composite indicators for monetary analysis," Temi di discussione (Economic working papers) 713, Bank of Italy, Economic Research and International Relations Area.
  101. Ard Reijer & Andreas Johansson, 2019. "Nowcasting Swedish GDP with a large and unbalanced data set," Empirical Economics, Springer, vol. 57(4), pages 1351-1373, October.
  102. Rochelle M. Edge & Refet S. Gurkaynak, 2010. "How Useful Are Estimated DSGE Model Forecasts for Central Bankers?," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 41(2 (Fall)), pages 209-259.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.