IDEAS home Printed from
   My bibliography  Save this paper

Forecasting economic activity with higher frequency targeted predictors


  • Guido Bulligan

    () (Bank of Italy)

  • Massimiliano Marcellino

    () (European University Institute, Bocconi University)

  • Fabrizio Venditti

    () (Bank of Italy)


In this paper we explore the performance of bridge and factor models in forecasting quarterly aggregates in the very short-term subject to a pre-selection of monthly indicators. Starting from a large information set, we select a subset of targeted predictors using data reduction techniques as in Bai and Ng (2008). We then compare a Diffusion Index forecasting model as in Stock and Watson (2002), with a Bridge model specified with an automated General-To-Specific routine. We apply these techniques to forecasting Italian GDP growth and its main components from the demand side and find that Bridge models outperform naive forecasts and compare favorably against factor models. Results for France, Germany, Spain and the euro area confirm these findings.

Suggested Citation

  • Guido Bulligan & Massimiliano Marcellino & Fabrizio Venditti, 2012. "Forecasting economic activity with higher frequency targeted predictors," Temi di discussione (Economic working papers) 847, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:wptemi:td_847_12

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Elena Angelini & Gonzalo Camba‐Mendez & Domenico Giannone & Lucrezia Reichlin & Gerhard Rünstler, 2011. "Short‐term forecasts of euro area GDP growth," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 25-44, February.
    2. Banbura, Marta & Rünstler, Gerhard, 2011. "A look into the factor model black box: Publication lags and the role of hard and soft data in forecasting GDP," International Journal of Forecasting, Elsevier, vol. 27(2), pages 333-346, April.
    3. Marcellino, Massimiliano & Schumacher, Christian, 2007. "Factor-MIDAS for now- and forecasting with ragged-edge data: a model comparison for German GDP," Discussion Paper Series 1: Economic Studies 2007,34, Deutsche Bundesbank.
    4. Kevin D. Hoover & Stephen J. Perez, 1999. "Data mining reconsidered: encompassing and the general-to-specific approach to specification search," Econometrics Journal, Royal Economic Society, vol. 2(2), pages 167-191.
    5. Riccardo Cristadoro & Giuseppe Saporito & Fabrizio Venditti, 2013. "Forecasting inflation and tracking monetary policy in the euro area: does national information help?," Empirical Economics, Springer, vol. 44(3), pages 1065-1086, June.
    6. Antonello D’ Agostino & Domenico Giannone, 2012. "Comparing Alternative Predictors Based on Large‐Panel Factor Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 306-326, April.
    7. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    8. Marie Diron, 2008. "Short-term forecasts of euro area real GDP growth: an assessment of real-time performance based on vintage data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(5), pages 371-390.
    9. Baffigi, Alberto & Golinelli, Roberto & Parigi, Giuseppe, 2004. "Bridge models to forecast the euro area GDP," International Journal of Forecasting, Elsevier, vol. 20(3), pages 447-460.
    10. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    11. Marta Bańbura & Michele Modugno, 2014. "Maximum Likelihood Estimation Of Factor Models On Datasets With Arbitrary Pattern Of Missing Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 133-160, January.
    12. Michael Artis & Massimiliano Marcellino & Tommaso Proietti, 2004. "Dating Business Cycles: A Methodological Contribution with an Application to the Euro Area," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 66(4), pages 537-565, September.
    13. Barhoumi, K. & Brunhes-Lesage, V. & Darné, O. & Ferrara, L. & Pluyaud, B. & Rouvreau, B., 2008. "Monthly forecasting of French GDP: A revised version of the OPTIM model," Working papers 222, Banque de France.
    14. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Marie Bessec, 2013. "Short‐Term Forecasts of French GDP: A Dynamic Factor Model with Targeted Predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 500-511, September.
    2. Germán López Espinosa, 2015. "Forecast Accuracy of Small and Large Scale Dynamic Factor Models in Developing Economies," Working Papers. Serie AD 2015-03, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    3. Matteo Luciani & Libero Monteforte, 2012. "Uncertainty and Heterogeneity in factor models forecasting," Working Papers 5, Department of the Treasury, Ministry of the Economy and of Finance.
    4. repec:dau:papers:123456789/10079 is not listed on IDEAS
    5. an de Meulen, Philipp, 2015. "Das RWI-Kurzfristprognosemodell," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 66(2), pages 25-46.
    6. Boriss Siliverstovs, 2017. "Short-term forecasting with mixed-frequency data: a MIDASSO approach," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
    7. Golinelli, Roberto & Parigi, Giuseppe, 2014. "Tracking world trade and GDP in real time," International Journal of Forecasting, Elsevier, vol. 30(4), pages 847-862.
    8. repec:spr:empeco:v:53:y:2017:i:1:d:10.1007_s00181-016-1151-z is not listed on IDEAS
    9. Christophe Piette, 2016. "Predicting Belgium’s GDP using targeted bridge models," Working Paper Research 290, National Bank of Belgium.
    10. Alessandro Girardi & Roberto Golinelli & Carmine Pappalardo, 2017. "The role of indicator selection in nowcasting euro-area GDP in pseudo-real time," Empirical Economics, Springer, vol. 53(1), pages 79-99, August.
    11. Kitlinski, Tobias & an de Meulen, Philipp, 2015. "The role of targeted predictors for nowcasting GDP with bridge models: Application to the Euro area," Ruhr Economic Papers 559, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.

    More about this item


    short-term GDP forecast; factor models; bridge models; General To Specific;

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_847_12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.