IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/2008900.html
   My bibliography  Save this paper

Forecasting inflation and tracking monetary policy in the euro area: does national information help?

Author

Listed:
  • Venditti, Fabrizio
  • Cristadoro, Riccardo
  • Saporito, Giuseppe

Abstract

The ECB objective is set in terms of year on year growth rate of the Euro area HICP. Nonetheless, a good deal of attention is given to national data by market analysts when they try to anticipate monetary policy moves. In this paper we use the Generalized Dynamic Factor model to develop a set of core inflation indicators that, combining national data with area wide information, allow us to answer two related questions. The first is whether country specific data actually bear any relevance for the future path of area wide price growth, over and above that already contained in area wide data. The second is whether in order to track ECB monetary policy decisions it is useful to take into account national information and not only area wide statistics. In both cases our findings point to the conclusion that, once area wide information is properly taken into account, there is little to be gained from considering national idiosyncratic developments. JEL Classification: C25, E37, E52

Suggested Citation

  • Venditti, Fabrizio & Cristadoro, Riccardo & Saporito, Giuseppe, 2008. "Forecasting inflation and tracking monetary policy in the euro area: does national information help?," Working Paper Series 900, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:2008900
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp900.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(6), pages 1113-1141, December.
    3. Carstensen Kai, 2006. "Estimating the ECB Policy Reaction Function," German Economic Review, De Gruyter, vol. 7(1), pages 1-34, February.
    4. Kirstin Hubrich & Guenter Beck & Massimiliano Marcellino, 2000. "Regional Inflation Dynamics within and across Euro Area Countries and a Comparison with the US," Regional and Urban Modeling 283600037, EcoMod.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    7. Quah, Danny & Vahey, Shaun P, 1995. "Measuring Core Inflation?," Economic Journal, Royal Economic Society, vol. 105(432), pages 1130-1144, September.
    8. Altissimo, Filippo & Benigno, Pierpaolo & Rodriguez Palenzuela, Diego, 2005. "Long-Run Determinants of Inflation Differentials in a Monetary Union," CEPR Discussion Papers 5149, C.E.P.R. Discussion Papers.
    9. Clarida, Richard & Gali, Jordi & Gertler, Mark, 1998. "Monetary policy rules in practice Some international evidence," European Economic Review, Elsevier, vol. 42(6), pages 1033-1067, June.
    10. Cogley, Timothy, 2002. "A Simple Adaptive Measure of Core Inflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 34(1), pages 94-113, February.
    11. Lars E O Svensson, 2005. "Monetary Policy with Judgment: Forecast Targeting," International Journal of Central Banking, International Journal of Central Banking, vol. 1(1), May.
    12. Kai Carstensen & Roberta Colavecchio, 2006. "The EBC Monetary Policy and its Taylor-type Reaction Function," Rivista italiana degli economisti, Società editrice il Mulino, issue 1, pages 51-86.
    13. Paolo Angelini & Paolo Del Giovane & Stefano Siviero & Daniele Terlizzese, 2002. "Monetary Policy Rules for the Euro Area: What Role for National Information?," Temi di discussione (Economic working papers) 457, Bank of Italy, Economic Research and International Relations Area.
    14. Vega, Juan Luis & Wynne, Mark A., 2001. "An evaluation of some measures of core inflation for the euro area," Working Paper Series 53, European Central Bank.
    15. Cristadoro, Riccardo & Forni, Mario & Reichlin, Lucrezia & Veronese, Giovanni, 2001. "A Core Inflation Index for the Euro Area," CEPR Discussion Papers 3097, C.E.P.R. Discussion Papers.
    16. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2003. "Macroeconomic forecasting in the Euro area: Country specific versus area-wide information," European Economic Review, Elsevier, vol. 47(1), pages 1-18, February.
    17. Kai Carstensen, 2006. "Estimating the ECB Policy Reaction Function," German Economic Review, Verein für Socialpolitik, vol. 7(1), pages 1-34, February.
    18. Michael F. Bryan & Stephen G. Cecchetti, 1993. "The consumer price index as a measure of inflation," Economic Review, Federal Reserve Bank of Cleveland, vol. 29(Q IV), pages 15-24.
    19. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    20. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    21. André Sapir & Marco Buti, 1998. "Economic policy in EMU," ULB Institutional Repository 2013/8078, ULB -- Universite Libre de Bruxelles.
    22. Gert Peersman & Frank Smets, 1999. "The Taylor Rule: A Useful Monetary Policy Benchmark for the Euro Area?," International Finance, Wiley Blackwell, vol. 2(1), pages 85-116, April.
    23. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    24. Stephen G. Cecchetti, 1997. "Measuring short-run inflation for central bankers," Review, Federal Reserve Bank of St. Louis, issue May, pages 143-155.
    25. Stephan Sauer & Jan-Egbert Sturm, 2003. "Using Taylor Rules to Understand ECB Monetary Policy," CESifo Working Paper Series 1110, CESifo.
    26. Richard H. Clarida & Jordi Gali & Mark Gertler, 1998. "Monetary policy rules in practice," Proceedings, Federal Reserve Bank of San Francisco, issue Mar.
    27. Paul De Grauwe, 2000. "Monetary Policies in the Presence of Asymmetries," Journal of Common Market Studies, Wiley Blackwell, vol. 38(4), pages 593-612, November.
    28. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    29. Aoki, Kosuke, 2001. "Optimal monetary policy responses to relative-price changes," Journal of Monetary Economics, Elsevier, vol. 48(1), pages 55-80, August.
    30. Domenico Giannone & Troy D. Matheson, 2007. "A New Core Inflation Indicator for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 145-180, December.
    31. Quah, Danny & Vahey, Shaun P, 1995. "Measuring Core Inflation?," Economic Journal, Royal Economic Society, vol. 105(432), pages 1130-1144, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Angela Capolongo & Claudia Pacella, 2019. "Forecasting inflation in the euro area: countries matter!," Temi di discussione (Economic working papers) 1224, Bank of Italy, Economic Research and International Relations Area.
    2. Angela Capolongo & Claudia Pacella, 2021. "Forecasting inflation in the euro area: countries matter!," Empirical Economics, Springer, vol. 61(5), pages 2477-2499, November.
    3. Ryadh M. Alkhareif & William Barnett, 2020. "Nowcasting Real Gdp For Saudi Arabia," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202018, University of Kansas, Department of Economics, revised Nov 2020.
    4. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting industrial production: the role of information and methods," IFC Bulletins chapters, in: Bank for International Settlements (ed.), The IFC's contribution to the 57th ISI Session, Durban, August 2009, volume 33, pages 227-235, Bank for International Settlements.
    5. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    6. Christina Bräuning & Ralf Fendel, 2018. "National information and euro area monetary policy: a generalized ordered choice approach," Empirical Economics, Springer, vol. 54(2), pages 501-522, March.
    7. Guido Bulligan & Massimiliano Marcellino & Fabrizio Venditti, 2012. "Forecasting economic activity with higher frequency targeted predictors," Temi di discussione (Economic working papers) 847, Bank of Italy, Economic Research and International Relations Area.
    8. Bulligan, Guido & Marcellino, Massimiliano & Venditti, Fabrizio, 2015. "Forecasting economic activity with targeted predictors," International Journal of Forecasting, Elsevier, vol. 31(1), pages 188-206.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Riccardo Cristadoro & Mario Forni & Lucrezia Reichlin & Giovanni Veronese, 2001. "A core inflation index for the euro area," Temi di discussione (Economic working papers) 435, Bank of Italy, Economic Research and International Relations Area.
    2. Rua, António, 2017. "A wavelet-based multivariate multiscale approach for forecasting," International Journal of Forecasting, Elsevier, vol. 33(3), pages 581-590.
    3. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2010. "Are disaggregate data useful for factor analysis in forecasting French GDP?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 132-144.
    4. Guido Bulligan & Roberto Golinelli & Giuseppe Parigi, 2010. "Forecasting monthly industrial production in real-time: from single equations to factor-based models," Empirical Economics, Springer, vol. 39(2), pages 303-336, October.
    5. Jamie Armour, 2006. "An Evaluation of Core Inflation Measures," Staff Working Papers 06-10, Bank of Canada.
    6. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    7. Van Nieuwenhuyze, Christophe & Benk, Szilard & Rünstler, Gerhard & Cristadoro, Riccardo & Den Reijer, Ard & Jakaitiene, Audrone & Jelonek, Piotr & Rua, António & Ruth, Karsten & Barhoumi, Karim, 2008. "Short-term forecasting of GDP using large monthly datasets: a pseudo real-time forecast evaluation exercise," Occasional Paper Series 84, European Central Bank.
    8. Marlene Amstad & Simon M. Potter & Robert W. Rich, 2014. "The FRBNY staff underlying inflation gauge: UIG," Staff Reports 672, Federal Reserve Bank of New York.
    9. Luciani, Matteo, 2014. "Forecasting with approximate dynamic factor models: The role of non-pervasive shocks," International Journal of Forecasting, Elsevier, vol. 30(1), pages 20-29.
    10. Marlene Amstad & Simon M. Potter & Robert W. Rich, 2017. "The New York Fed Staff Underlying Inflation Gauge (UIG)," Economic Policy Review, Federal Reserve Bank of New York, issue 23-2, pages 1-32.
    11. Huiwen Lai & Eric C. Y. Ng, 2020. "On business cycle forecasting," Frontiers of Business Research in China, Springer, vol. 14(1), pages 1-26, December.
    12. Jinill Kim & Byung Kwun Ahn, 2012. "A New Measure for Core Inflation Based on Generalized Dynamic-Factor Model," Economic Analysis (Quarterly), Economic Research Institute, Bank of Korea, vol. 18(2), pages 1-28, June.
    13. Sbrana, Giacomo & Silvestrini, Andrea & Venditti, Fabrizio, 2017. "Short-term inflation forecasting: The M.E.T.A. approach," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1065-1081.
    14. Ard Reijer & Andreas Johansson, 2019. "Nowcasting Swedish GDP with a large and unbalanced data set," Empirical Economics, Springer, vol. 57(4), pages 1351-1373, October.
    15. Stefano Siviero & Giovanni Veronese, 2011. "A policy-sensible benchmark core inflation measure," Oxford Economic Papers, Oxford University Press, vol. 63(4), pages 648-672, December.
    16. Marlene Amstad & Simon M. Potter, 2009. "Real time underlying inflation gauges for monetary policymakers," Staff Reports 420, Federal Reserve Bank of New York.
    17. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    18. Domenico Giannone & Troy D. Matheson, 2007. "A New Core Inflation Indicator for New Zealand," International Journal of Central Banking, International Journal of Central Banking, vol. 3(4), pages 145-180, December.
    19. Kirstin Hubrich & Guenter Beck & Massimiliano Marcellino, 2000. "Regional Inflation Dynamics within and across Euro Area Countries and a Comparison with the US," Regional and Urban Modeling 283600037, EcoMod.
    20. Lei Lei Song, 2003. "The Role of the Unit of Analysis in Tax Policy Reform Evaluations," Melbourne Institute Working Paper Series wp2003n29, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.

    More about this item

    Keywords

    dynamic factor model; forecasting; inflation; monetary policy; Taylor rule;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E52 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Monetary Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:2008900. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/emieude.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.