IDEAS home Printed from https://ideas.repec.org/p/ssa/lemwps/2007-21.html
   My bibliography  Save this paper

A Multivariate Perspective for Modeling and Forecasting Inflation's Conditional Mean and Variance

Author

Listed:
  • Matteo Barigozzi
  • Marco Capasso

Abstract

We test the importance of multivariate information for modelling and forecasting in- flation's conditional mean and variance. In the literature, the existence of inflation's conditional heteroskedasticity has been debated for years, as it seemed to appear only in some datasets and for some lag lengths. This phenomenon might be due to the fact that inflation depends on a linear combination of economy-wide dynamic common fac- tors, some of which are conditionally heteroskedastic and some are not. Modelling the conditional heteroskedasticity of the common factors can thus improve the forecasts of inflation's conditional mean and variance. Moreover, it allows to detect and predict con- ditional correlations between inflation and other macroeconomic variables, correlations that might be exploited when planning monetary policies. The Dynamic Factor GARCH (DF-GARCH) by Alessi et al. [2006] is used here to exploit the relations between inflation and the other macroeconomic variables for inflation fore- casting purposes. The DF-GARCH is a dynamic factor model as the one by Forni et al. [2005], with the addition of an equation for the evolution of static factors as in Giannone et al. [2004] and the assumption of heteroskedastic dynamic factors. When comparing the Dynamic Factor GARCH with univariate models and with the classical dynamic factor models, the DF-GARCH is able to provide better forecasts both of inflation and of its conditional variance.

Suggested Citation

  • Matteo Barigozzi & Marco Capasso, 2007. "A Multivariate Perspective for Modeling and Forecasting Inflation's Conditional Mean and Variance," LEM Papers Series 2007/21, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
  • Handle: RePEc:ssa:lemwps:2007/21
    as

    Download full text from publisher

    File URL: http://www.lem.sssup.it/WPLem/files/2007-21.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2007. "A Robust Criterion for Determining the Number of Static Factors in Approximate Factor Models," LEM Papers Series 2007/19, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Lutz Kilian & Simone Manganelli, 2008. "The Central Banker as a Risk Manager: Estimating the Federal Reserve's Preferences under Greenspan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 40(6), pages 1103-1129, September.
    4. Domenico Giannone & Lucrezia Reichlin & Luca Sala, 2005. "Monetary Policy in Real Time," NBER Chapters, in: NBER Macroeconomics Annual 2004, Volume 19, pages 161-224, National Bureau of Economic Research, Inc.
    5. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    6. Stilianos Fountas & Menelaos Karanasos & Marika Karanassou, "undated". "A GARCH Model of Inflation and Inflation Uncertainty with Simultaneous Feedback," Discussion Papers 00/24, Department of Economics, University of York.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1319-1347, October.
    9. Engle, Robert F, 1983. "Estimates of the Variance of U.S. Inflation Based upon the ARCH Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 15(3), pages 286-301, August.
    10. Antonello D’ Agostino & Domenico Giannone, 2012. "Comparing Alternative Predictors Based on Large‐Panel Factor Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 306-326, April.
    11. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    12. Kontonikas, A., 2004. "Inflation and inflation uncertainty in the United Kingdom, evidence from GARCH modelling," Economic Modelling, Elsevier, vol. 21(3), pages 525-543, May.
    13. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    14. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    15. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    16. Ball, Laurence, 1992. "Why does high inflation raise inflation uncertainty?," Journal of Monetary Economics, Elsevier, vol. 29(3), pages 371-388, June.
    17. Friedman, Milton, 1977. "Nobel Lecture: Inflation and Unemployment," Journal of Political Economy, University of Chicago Press, vol. 85(3), pages 451-472, June.
    18. Jean Boivin & Serena Ng, 2005. "Understanding and Comparing Factor-Based Forecasts," International Journal of Central Banking, International Journal of Central Banking, vol. 1(3), December.
    19. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    20. Grier, Kevin B. & Perry, Mark J., 1998. "On inflation and inflation uncertainty in the G7 countries," Journal of International Money and Finance, Elsevier, vol. 17(4), pages 671-689, August.
    21. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    22. Lucia Alessi & Matteo Barigozzi & Marco Capasso, 2006. "Dynamic Factor GARCH: Multivariate Volatility Forecast for a Large Number of Series," LEM Papers Series 2006/25, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Broto Carmen & Ruiz Esther, 2009. "Testing for Conditional Heteroscedasticity in the Components of Inflation," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-30, May.
    2. Kushal Banik Chowdhury & Nityananda Sarkar, 2015. "The Effect of Inflation on Inflation Uncertainty in the G7 Countries: A Double Threshold GARCH Model," International Econometric Review (IER), Econometric Research Association, vol. 7(1), pages 34-50, April.
    3. Kajal Lahiri & Fushang Liu, 2006. "Modelling multi‐period inflation uncertainty using a panel of density forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1199-1219, December.
    4. Steffen R. Henzel & Malte Rengel, 2017. "Dimensions Of Macroeconomic Uncertainty: A Common Factor Analysis," Economic Inquiry, Western Economic Association International, vol. 55(2), pages 843-877, April.
    5. James Payne, 2009. "Inflation targeting and the inflation-inflation uncertainty relationship: evidence from Thailand," Applied Economics Letters, Taylor & Francis Journals, vol. 16(3), pages 233-238.
    6. Giannone, Domenico & Reichlin, Lucrezia & Small, David, 2008. "Nowcasting: The real-time informational content of macroeconomic data," Journal of Monetary Economics, Elsevier, vol. 55(4), pages 665-676, May.
    7. Kushal Banik Chowdhury & Kaustav Kanti Sarkar & Srikanta Kundu, 2021. "Nonlinear relationships between inflation, output growth and uncertainty in India: New evidence from a bivariate threshold model," Bulletin of Economic Research, Wiley Blackwell, vol. 73(3), pages 469-493, July.
    8. Conrad, Christian & Hartmann, Matthias, 2014. "Cross-sectional evidence on the relation between monetary policy, macroeconomic conditions and low-frequency inflation uncertainty," Working Papers 0574, University of Heidelberg, Department of Economics.
    9. James Payne, 2009. "Official dollarization in El Salvador and the inflation-inflation uncertainty nexus," Applied Economics Letters, Taylor & Francis Journals, vol. 16(12), pages 1195-1199.
    10. Zeynel Abidin Ozdemir, 2010. "Dynamics Of Inflation, Output Growth And Their Uncertainty In The Uk: An Empirical Analysis," Manchester School, University of Manchester, vol. 78(6), pages 511-537, December.
    11. Levent, Korap, 2009. "Enflasyon ve enflasyon belirsizliği ilişkisi için G7 ekonomileri üzerine bir inceleme [An investigation for the inflation and inflation uncertainty relationship upon the G7 economies]," MPRA Paper 19478, University Library of Munich, Germany.
    12. Kirstin Hubrich & Guenter Beck & Massimiliano Marcellino, 2000. "Regional Inflation Dynamics within and across Euro Area Countries and a Comparison with the US," Regional and Urban Modeling 283600037, EcoMod.
    13. Kuang‐Liang Chang & Chi‐Wei He, 2010. "Does The Magnitude Of The Effect Of Inflation Uncertainty On Output Growth Depend On The Level Of Inflation?," Manchester School, University of Manchester, vol. 78(2), pages 126-148, March.
    14. Vladimir Kuzin & Massimiliano Marcellino & Christian Schumacher, 2009. "Pooling versus Model Selection for Nowcasting with Many Predictors: An Application to German GDP," Economics Working Papers ECO2009/13, European University Institute.
    15. Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018. "Dynamic factor model with infinite‐dimensional factor space: Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
    16. Nora Abu Asab & Juan Carlos Cuestas & Alberto Montagnoli, 2018. "Inflation targeting or exchange rate targeting: Which framework supports the goal of price stability in emerging market economies?," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-21, August.
    17. Fountas, Stilianos, 2001. "The relationship between inflation and inflation uncertainty in the UK: 1885-1998," Economics Letters, Elsevier, vol. 74(1), pages 77-83, December.
    18. Hindrayanto, Irma & Koopman, Siem Jan & de Winter, Jasper, 2016. "Forecasting and nowcasting economic growth in the euro area using factor models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1284-1305.
    19. Sintim-Aboagye, Hermann, 2013. "Imf And World Bank Economic Programs On Inflation: Relevance To Nepad," Review of Applied Economics, Lincoln University, Department of Financial and Business Systems, vol. 9(1-2), January.
    20. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.

    More about this item

    Keywords

    Inflation; Factor Models; GARCH;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssa:lemwps:2007/21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/labssit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.