IDEAS home Printed from https://ideas.repec.org/p/apk/doctra/1604.html
   My bibliography  Save this paper

Univariate Forecasts for Costa Rican Inflation With Stochastic Volatility and GARCH Effects

Author

Listed:
  • Adolfo Rodríguez-Vargas

    (Department of Economic Research, Central Bank of Costa Rica)

Abstract

This paper estimates univariate models for forecasting inflation in Costa Rica to be used as an input in the monetary policy formulation of the Central Bank of Costa Rica (BCCR). We estimate 14 specifications that consider several assumptions about the functional form and the statistical properties of the data generating process. We estimate unobserved components models and ARMA models, with different specifications for the conditional mean and several assumptions about the behaviour of the variance: homocedasticity, GARCH effects and stochastic volatility. The forecasting properties of these models were rigorously evaluated following the recommendations in the literature about optimal forecasts, and then the best-performing forecasts were included in a combination. We found that the forecasts from unobserved components models showed the best performance, and that inclusion of stochastic volatility improved forecasting performance at longer horizons. At shorter horizons, the forecasts with better performance were more precise than the Bayesian forecasts currently used at the BCCR. The combination improves on the performance of individual forecasts at all horizons. We recommend using the proposed combination along with the Bayesian forecasts, especially at longer horizons: 6 and 12 months. Then, at 1 and 3-month horizon, it is better to use either the combination or the UC forecasts, because these encompass the others at these horizons. ***Resumen: En este trabajo se estiman modelos de pronóstico univariados para la inflación de Costa Rica con el fin de que sean insumo en la formulación de la política monetaria del Banco Central de Costa Rica (BCCR). Se estiman 14 especificaciones que consideran diferentes supuestos sobre la forma funcional y las propiedades estadísticas del proceso generador de datos. Éstas incluyen modelos de componentes no observables y ARMA, con diferentes especificaciones para la ecuación de media y varios supuestos para el comportamiento de la variancia: homocedasticidad, efectos GARCH y volatilidad estocástica. Las propiedades de los pronósticos estimados se evalúan rigurosamente siguiendo las recomendaciones de la literatura sobre pronósticos óptimos, y aquellos con el mejor desempeño se incluyen en una combinación. Se encuentra que los pronósticos obtenidos a partir de modelos de componentes no observables mostraron el mejor desempeño, y que la inclusión de volatilidad estocástica mejora la capacidad de pronóstico a los horizontes más largos. Para horizontes más cortos, los pronósticos con mejor desempeño son más precisos que los bayesianos actualmente en uso en el BCCR. La combinación calculada supera el desempeño de los pronósticos individuales a todos los horizontes. Se recomienda que para los horizontes de 6 y 12 meses se utilice la combinación propuesta en conjunto con los pronósticos bayesianos. Para horizontes de 1 y 3 meses, es posible utilizar la combinación o bien los pronósticos UC, que son los que tienden a dominar a estos plazos.

Suggested Citation

  • Adolfo Rodríguez-Vargas, 2019. "Univariate Forecasts for Costa Rican Inflation With Stochastic Volatility and GARCH Effects," Documentos de Trabajo 1604, Banco Central de Costa Rica.
  • Handle: RePEc:apk:doctra:1604
    as

    Download full text from publisher

    File URL: https://repositorioinvestigaciones.bccr.fi.cr/handle/20.500.12506/282
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:apk:doctra:1604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Departamento de Investigación Económica (email available below). General contact details of provider: https://edirc.repec.org/data/bccrrcr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.