IDEAS home Printed from https://ideas.repec.org/p/mod/wcefin/0070.html
   My bibliography  Save this paper

The Forecasting Performance of Dynamic Factor Models with Vintage Data

Author

Listed:
  • Luca Di Bonaventura
  • Mario Forni

    ()

  • Francesco Pattarin

    ()

Abstract

We present a comparative analysis of the forecasting performance of two dynamic factor models, the Stock and Watson (2002a, b) model and the Forni, Hallin, Lippi and Reichlin (2005) model, based on vintage data. Our dataset that contains 107 monthly US “first release” macroeconomic and financial vintage time series, spanning the 1996:12 to 2017:6 period with monthly periodicity, extracted from the Bloomberg database†. We compute real-time one-month-ahead forecasts with both models for four key macroeconomic variables: the month-on-month change in industrial production, the unemployment rate, the core consumer price index and the ISM Purchasing Managers’ Index. First, we find that both the Stock and Watson and the Forni, Hallin, Lippi and Reichlin models outperform simple autoregressions for industrial production, unemployment rate and consumer prices, but that only the first model does so for the PMI. Second, we find that neither models always outperform the other. While Forni, Hallin, Lippi and Reichlin’s beats Stock and Watson’s in forecasting industrial production and consumer prices, the opposite happens for the unemployment rate and the PMI.

Suggested Citation

  • Luca Di Bonaventura & Mario Forni & Francesco Pattarin, 2018. "The Forecasting Performance of Dynamic Factor Models with Vintage Data," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0070, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
  • Handle: RePEc:mod:wcefin:0070
    as

    Download full text from publisher

    File URL: http://155.185.68.2/campusone/web_dep/CefinPaper/CEFIN-WP70.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Forni, Mario & Hallin, Marc & Lippi, Marco & Reichlin, Lucrezia, 2005. "The Generalized Dynamic Factor Model: One-Sided Estimation and Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 830-840, September.
    2. Forni, Mario & Lippi, Marco, 2001. "The Generalized Dynamic Factor Model: Representation Theory," Econometric Theory, Cambridge University Press, vol. 17(06), pages 1113-1141, December.
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Christian Schumacher, 2007. "Forecasting German GDP using alternative factor models based on large datasets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(4), pages 271-302.
    5. repec:taf:jnlbes:v:34:y:2016:i:4:p:574-589 is not listed on IDEAS
    6. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    7. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2015. "Dynamic factor models with infinite-dimensional factor spaces: One-sided representations," Journal of Econometrics, Elsevier, vol. 185(2), pages 359-371.
    8. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    9. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    10. Forni, Mario & Giannone, Domenico & Lippi, Marco & Reichlin, Lucrezia, 2009. "Opening The Black Box: Structural Factor Models With Large Cross Sections," Econometric Theory, Cambridge University Press, vol. 25(05), pages 1319-1347, October.
    11. George Kapetanios & Massimiliano Marcellino, 2009. "A parametric estimation method for dynamic factor models of large dimensions," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(2), pages 208-238, March.
    12. Forni, Mario & Hallin, Marc & Lippi, Marco & Zaffaroni, Paolo, 2017. "Dynamic factor models with infinite-dimensional factor space: Asymptotic analysis," Journal of Econometrics, Elsevier, vol. 199(1), pages 74-92.
    13. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    14. F. Della Marra, 2017. "A forecasting performance comparison of dynamic factor models based on static and dynamic methods," Economics Department Working Papers 2017-ME01, Department of Economics, Parma University (Italy).
    15. Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
    16. Mario Forni & Marc Hallin & Marco Lippi & Lucrezia Reichlin, 2000. "The Generalized Dynamic-Factor Model: Identification And Estimation," The Review of Economics and Statistics, MIT Press, vol. 82(4), pages 540-554, November.
    17. Mario Forni & Alessandro Giovannelli & Marco Lippi & Stefano Soccorsi, 2018. "Dynamic factor model with infinite‐dimensional factor space: Forecasting," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 625-642, August.
    18. Filippo Altissimo & Riccardo Cristadoro & Mario Forni & Marco Lippi & Giovanni Veronese, 2010. "New Eurocoin: Tracking Economic Growth in Real Time," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1024-1034, November.
    19. Antonello D’ Agostino & Domenico Giannone, 2012. "Comparing Alternative Predictors Based on Large‐Panel Factor Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 306-326, April.
    20. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    21. Ard H.J. den Reijer, 2005. "Forecasting Dutch GDP using Large Scale Factor Models," DNB Working Papers 028, Netherlands Central Bank, Research Department.
    22. Michael W. McCracken & Serena Ng, 2016. "FRED-MD: A Monthly Database for Macroeconomic Research," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 574-589, October.
    23. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Barigozzi & Marc Hallin & Stefano Soccorsi, 2019. "Time-Varying General Dynamic Factor Models and the Measurement of Financial Connectedness," Working Papers ECARES 2019-09, ULB -- Universite Libre de Bruxelles.
    2. repec:gam:jeners:v:12:y:2019:i:7:p:1360-:d:221154 is not listed on IDEAS
    3. Chiara Pederzoli & Costanza Torricelli, 2019. "The impact of the Fundamental Review of the Trading Book: A preliminary assessment on a stylized portfolio," Centro Studi di Banca e Finanza (CEFIN) (Center for Studies in Banking and Finance) 0075, Universita di Modena e Reggio Emilia, Dipartimento di Economia "Marco Biagi".
    4. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.

    More about this item

    Keywords

    Dynamic factor models; Forecasting; Forecasting Performance; Vintage data; First release data;

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mod:wcefin:0070. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Giuseppe Marotta). General contact details of provider: http://edirc.repec.org/data/demodit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.