IDEAS home Printed from https://ideas.repec.org/p/iza/izadps/dp16431.html
   My bibliography  Save this paper

The Impact of High Temperatures on Performance in Work-Related Activities

Author

Listed:
  • Picchio, Matteo

    (Marche Polytechnic University)

  • van Ours, Jan C.

    (Erasmus University Rotterdam)

Abstract

High temperatures can have a negative effect on work-related activities. Labor productivity may go down because mental health or physical health is worse when it is too warm. Workers may experience difficulties concentrating or they have to reduce effort in order to cope with heat. We investigate how temperature affects performance of male professional tennis players. We use data about outdoor singles matches from 2003 until 2021. Our identification strategy relies on the plausible exogeneity of short-term daily temperature variations in a given tournament from the average temperature over the same tournament. We find that performance significantly decreases with ambient temperature. The magnitude of the temperature effect is age-specific and skill-specific. Older and less-skilled players suffer more from high temperatures than younger and more skilled players do. The effect of temperature on performance is smaller when there is more at stake. Our findings also suggest that there is adaptation to high temperatures: the effects are smaller if the heat lasts for several days.

Suggested Citation

  • Picchio, Matteo & van Ours, Jan C., 2023. "The Impact of High Temperatures on Performance in Work-Related Activities," IZA Discussion Papers 16431, Institute of Labor Economics (IZA).
  • Handle: RePEc:iza:izadps:dp16431
    as

    Download full text from publisher

    File URL: https://docs.iza.org/dp16431.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hanna, Rema & Oliva, Paulina, 2015. "The effect of pollution on labor supply: Evidence from a natural experiment in Mexico City," Journal of Public Economics, Elsevier, vol. 122(C), pages 68-79.
    2. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    3. Mattia Filomena & Matteo Picchio, 2022. "Unsafe Temperatures, Unsafe Jobs: The Impact Of Ambient Temperatures On Work Related Injuries," Working Papers 472, Universita' Politecnica delle Marche (I), Dipartimento di Scienze Economiche e Sociali.
    4. Marshall Burke & Solomon M. Hsiang & Edward Miguel, 2015. "Global non-linear effect of temperature on economic production," Nature, Nature, vol. 527(7577), pages 235-239, November.
    5. Jamie T. Mullins, 2018. "Ambient air pollution and human performance: Contemporaneous and acclimatization effects of ozone exposure on athletic performance," Health Economics, John Wiley & Sons, Ltd., vol. 27(8), pages 1189-1200, August.
    6. Joshua Graff Zivin & Matthew Neidell, 2014. "Temperature and the Allocation of Time: Implications for Climate Change," Journal of Labor Economics, University of Chicago Press, vol. 32(1), pages 1-26.
    7. Riccardo Colacito & Bridget Hoffmann & Toan Phan, 2019. "Temperature and Growth: A Panel Analysis of the United States," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 51(2-3), pages 313-368, March.
    8. Eric Fesselmeyer, 2021. "The impact of temperature on labor quality: Umpire accuracy in Major League Baseball," Southern Economic Journal, John Wiley & Sons, vol. 88(2), pages 545-567, October.
    9. Ormandy, David & Ezratty, Véronique, 2012. "Health and thermal comfort: From WHO guidance to housing strategies," Energy Policy, Elsevier, vol. 49(C), pages 116-121.
    10. Olivier Deschênes & Enrico Moretti, 2009. "Extreme Weather Events, Mortality, and Migration," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 659-681, November.
    11. E. Somanathan & Rohini Somanathan & Anant Sudarshan & Meenu Tewari, 2021. "The Impact of Temperature on Productivity and Labor Supply: Evidence from Indian Manufacturing," Journal of Political Economy, University of Chicago Press, vol. 129(6), pages 1797-1827.
    12. Lichter, Andreas & Pestel, Nico & Sommer, Eric, 2017. "Productivity effects of air pollution: Evidence from professional soccer," Labour Economics, Elsevier, vol. 48(C), pages 54-66.
    13. Cameron, A. Colin & Gelbach, Jonah B. & Miller, Douglas L., 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 238-249.
    14. Achyuta Adhvaryu & Namrata Kala & Anant Nyshadham, 2020. "The Light and the Heat: Productivity Co-Benefits of Energy-Saving Technology," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 779-792, October.
    15. Joshua Graff Zivin & Matthew Neidell, 2012. "The Impact of Pollution on Worker Productivity," American Economic Review, American Economic Association, vol. 102(7), pages 3652-3673, December.
    16. Anthony Heyes & Soodeh Saberian, 2019. "Temperature and Decisions: Evidence from 207,000 Court Cases," American Economic Journal: Applied Economics, American Economic Association, vol. 11(2), pages 238-265, April.
    17. R. Jisung Park & Joshua Goodman & Michael Hurwitz & Jonathan Smith, 2020. "Heat and Learning," American Economic Journal: Economic Policy, American Economic Association, vol. 12(2), pages 306-339, May.
    18. Joshua Graff Zivin & Solomon M. Hsiang & Matthew Neidell, 2018. "Temperature and Human Capital in the Short and Long Run," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(1), pages 77-105.
    19. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    20. Mullins, Jamie T. & White, Corey, 2019. "Temperature and mental health: Evidence from the spectrum of mental health outcomes," Journal of Health Economics, Elsevier, vol. 68(C).
    21. Tom Chang & Joshua Graff Zivin & Tal Gross & Matthew Neidell, 2016. "Particulate Pollution and the Productivity of Pear Packers," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 141-169, August.
    22. Young, Alwyn, 2019. "Channeling Fisher: randomization tests and the statistical insignificance of seemingly significant experimental results," LSE Research Online Documents on Economics 101401, London School of Economics and Political Science, LSE Library.
    23. Kalkuhl, Matthias & Wenz, Leonie, 2020. "The impact of climate conditions on economic production. Evidence from a global panel of regions," Journal of Environmental Economics and Management, Elsevier, vol. 103(C).
    24. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    25. Marshall Burke & Vincent Tanutama & Sam Heft-Neal & Miyuki Hino & David Lobell, 2023. "Game, Sweat, Match: Temperature and Elite Worker Productivity," NBER Working Papers 31650, National Bureau of Economic Research, Inc.
    26. Robert Hoffmann & Lee Chew Ging & Bala Ramasamy, 2002. "The Socio-Economic Determinants of International Soccer Performance," Journal of Applied Economics, Universidad del CEMA, vol. 5, pages 253-272, November.
    27. Anna Fitzpatrick & Joseph Antony Stone & Simon Choppin & John Kelley, 2019. "Important performance characteristics in elite clay and grass court tennis match-play," International Journal of Performance Analysis in Sport, Taylor & Francis Journals, vol. 19(6), pages 942-952, November.
    28. R. Jisung Park & A. Patrick Behrer & Joshua Goodman, 2021. "Learning is inhibited by heat exposure, both internationally and within the United States," Nature Human Behaviour, Nature, vol. 5(1), pages 19-27, January.
    29. Olivier Deschênes & Michael Greenstone, 2011. "Climate Change, Mortality, and Adaptation: Evidence from Annual Fluctuations in Weather in the US," American Economic Journal: Applied Economics, American Economic Association, vol. 3(4), pages 152-185, October.
    30. Jacob Moscona & Karthik A Sastry, 2023. "Does Directed Innovation Mitigate Climate Damage? Evidence from U.S. Agriculture," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(2), pages 637-701.
    31. Alan Barreca & Karen Clay & Olivier Deschenes & Michael Greenstone & Joseph S. Shapiro, 2016. "Adapting to Climate Change: The Remarkable Decline in the US Temperature-Mortality Relationship over the Twentieth Century," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 105-159.
    32. Melissa LoPalo, 2023. "Temperature, Worker Productivity, and Adaptation: Evidence from Survey Data Production," American Economic Journal: Applied Economics, American Economic Association, vol. 15(1), pages 192-229, January.
    33. Marcus Dillender, 2021. "Climate Change and Occupational Health: Are There Limits to Our Ability to Adapt?," Journal of Human Resources, University of Wisconsin Press, vol. 56(1), pages 184-224.
    34. Park, R. Jisung & Pankratz, Nora & Behrer, A. Patrick, 2021. "Temperature, Workplace Safety, and Labor Market Inequality," IZA Discussion Papers 14560, Institute of Labor Economics (IZA).
    35. R. Jisung Park & A. Patrick Behrer & Joshua Goodman, 2021. "Publisher Correction: Learning is inhibited by heat exposure, both internationally and within the United States," Nature Human Behaviour, Nature, vol. 5(1), pages 170-170, January.
    36. Jiaxiu He & Haoming Liu & Alberto Salvo, 2019. "Severe Air Pollution and Labor Productivity: Evidence from Industrial Towns in China," American Economic Journal: Applied Economics, American Economic Association, vol. 11(1), pages 173-201, January.
    37. Geoffrey Heal & Jisung Park, 2016. "Editor's Choice Reflections—Temperature Stress and the Direct Impact of Climate Change: A Review of an Emerging Literature," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 10(2), pages 347-362.
    38. Ireland, Andrew & Johnston, David & Knott, Rachel, 2023. "Heat and worker health," Journal of Health Economics, Elsevier, vol. 91(C).
    39. Alwyn Young, 2019. "Channeling Fisher: Randomization Tests and the Statistical Insignificance of Seemingly Significant Experimental Results," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(2), pages 557-598.
    40. Andrew Ireland & David Johnston & Rachel Knott, 2023. "Heat and Worker Health," Papers 2301.11554, arXiv.org, revised Jun 2023.
    41. Klaassen F. J G M & Magnus J. R., 2001. "Are Points in Tennis Independent and Identically Distributed? Evidence From a Dynamic Binary Panel Data Model," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 500-509, June.
    42. Steven Sexton & Zhenxuan Wang & Jamie T. Mullins, 2022. "Heat Adaptation and Human Performance in a Warming Climate," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(1), pages 141-163.
    43. de Ree, Joppe & Alessie, Rob, 2011. "Life satisfaction and age: Dealing with underidentification in age-period-cohort models," Social Science & Medicine, Elsevier, vol. 73(1), pages 177-182, July.
    44. Baylis, Patrick, 2020. "Temperature and temperament: Evidence from Twitter," Journal of Public Economics, Elsevier, vol. 184(C).
    45. R. Jisung Park, 2022. "Hot Temperature and High-Stakes Performance," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 400-434.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dang, Hai-Anh & Hallegatte, Stephane & Trinh, Trong-Anh, 2023. "Does Global Warming Worsen Poverty and Inequality? An Updated Review," IZA Discussion Papers 16570, Institute of Labor Economics (IZA).
    2. Sam Cosaert & Adrián Nieto & Konstantinos Tatsiramos, 2023. "Temperature and Joint Time Use," CESifo Working Paper Series 10464, CESifo.
    3. Wei, Xiahai & Li, Jianan & Liu, Hongyou & Wan, Jiangtao, 2023. "Temperature and outdoor productivity: Evidence from professional soccer players," Journal of Asian Economics, Elsevier, vol. 87(C).
    4. Cosaert, Sam & Nieto Castro, Adrian & Tatsiramos, Konstantinos, 2023. "Temperature and the Timing of Work," IZA Discussion Papers 16480, Institute of Labor Economics (IZA).
    5. Jimmy Karlsson, 2021. "Temperature and Exports: Evidence from the United States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(2), pages 311-337, October.
    6. Heyes, Anthony & Saberian, Soodeh, 2022. "Hot Days, the ability to Work and climate resilience: Evidence from a representative sample of 42,152 Indian households," Journal of Development Economics, Elsevier, vol. 155(C).
    7. Benedikt Janzen, 2022. "Temperature and Mental Health: Evidence from Helpline Calls," Papers 2207.04992, arXiv.org, revised Nov 2022.
    8. Filomena, Mattia & Picchio, Matteo, 2023. "Unsafe Temperatures, Unsafe Jobs: The Impact of Weather Conditions on Work-Related Injuries," IZA Discussion Papers 16169, Institute of Labor Economics (IZA).
    9. Gibney, Garreth & McDermott, Thomas K.J. & Cullinan, John, 2023. "Temperature, morbidity, and behavior in milder climates," Economic Modelling, Elsevier, vol. 118(C).
    10. Eric Fesselmeyer, 2021. "The impact of temperature on labor quality: Umpire accuracy in Major League Baseball," Southern Economic Journal, John Wiley & Sons, vol. 88(2), pages 545-567, October.
    11. Acevedo, Sebastian & Mrkaic, Mico & Novta, Natalija & Pugacheva, Evgenia & Topalova, Petia, 2020. "The Effects of Weather Shocks on Economic Activity: What are the Channels of Impact?," Journal of Macroeconomics, Elsevier, vol. 65(C).
    12. Ha Trong Nguyen & Huong Thu Le & Luke B Connelly, 2021. "Weather and children's time allocation," Health Economics, John Wiley & Sons, Ltd., vol. 30(7), pages 1559-1579, July.
    13. Holtermann, Linus & Rische, Marie-Christin, 2020. "The Subnational Effect of Temperature on Economic Production: A Disaggregated Analysis in European Regions," MPRA Paper 104606, University Library of Munich, Germany.
    14. Park, R. Jisung & Pankratz, Nora & Behrer, A. Patrick, 2021. "Temperature, Workplace Safety, and Labor Market Inequality," IZA Discussion Papers 14560, Institute of Labor Economics (IZA).
    15. Philippe Kabore & Nicholas Rivers, 2023. "Manufacturing output and extreme temperature: Evidence from Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(1), pages 191-224, February.
    16. Duan, Hongbo & Yuan, Deyu & Cai, Zongwu & Wang, Shouyang, 2022. "Valuing the impact of climate change on China’s economic growth," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 155-174.
    17. Karlsson, Martin & Ziebarth, Nicolas R., 2018. "Population health effects and health-related costs of extreme temperatures: Comprehensive evidence from Germany," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 93-117.
    18. Pestel, Nico & Oswald, Andrew J., 2021. "Why Do Relatively Few Economists Work on Climate Change? A Survey," IZA Discussion Papers 14885, Institute of Labor Economics (IZA).
    19. Mullins, Jamie T. & White, Corey, 2019. "Temperature and mental health: Evidence from the spectrum of mental health outcomes," Journal of Health Economics, Elsevier, vol. 68(C).
    20. Doremus, Jacqueline M. & Jacqz, Irene & Johnston, Sarah, 2022. "Sweating the energy bill: Extreme weather, poor households, and the energy spending gap," Journal of Environmental Economics and Management, Elsevier, vol. 112(C).

    More about this item

    Keywords

    climate change; temperatures; tennis; performance; productivity;
    All these keywords.

    JEL classification:

    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • J81 - Labor and Demographic Economics - - Labor Standards - - - Working Conditions
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iza:izadps:dp16431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Holger Hinte (email available below). General contact details of provider: https://edirc.repec.org/data/izaaade.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.