IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/101401.html
   My bibliography  Save this paper

Channeling Fisher: randomization tests and the statistical insignificance of seemingly significant experimental results

Author

Listed:
  • Young, Alwyn

Abstract

I follow R. A. Fisher's The Design of Experiments (1935), using randomization statistical inference to test the null hypothesis of no treatment effects in a comprehensive sample of 53 experimental papers drawn from the journals of the American Economic Association. In the average paper, randomization tests of the significance of individual treatment effects find 13% to 22% fewer significant results than are found using authors’ methods. In joint tests of multiple treatment effects appearing together in tables, randomization tests yield 33% to 49% fewer statistically significant results than conventional tests. Bootstrap and jackknife methods support and confirm the randomization results.

Suggested Citation

  • Young, Alwyn, 2019. "Channeling Fisher: randomization tests and the statistical insignificance of seemingly significant experimental results," LSE Research Online Documents on Economics 101401, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:101401
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/101401/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anderson, Michael L, 2008. "Multiple Inference and Gender Differences in the Effects of Early Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt15n8j26f, Department of Agricultural & Resource Economics, UC Berkeley.
    2. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    3. Savin, N.E., 1984. "Multiple hypothesis testing," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 14, pages 827-879, Elsevier.
    4. Anderson, Michael L., 2008. "Multiple Inference and Gender Differences in the Effects of Early Intervention: A Reevaluation of the Abecedarian, Perry Preschool, and Early Training Projects," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1481-1495.
    5. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    6. Chesher, Andrew & Jewitt, Ian, 1987. "The Bias of a Heteroskedasticity Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 55(5), pages 1217-1222, September.
    7. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019. "Inference under covariate‐adaptive randomization with multiple treatments," Quantitative Economics, Econometric Society, vol. 10(4), pages 1747-1785, November.
    8. Joseph P. Romano & Michael Wolf, 2005. "Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 94-108, March.
    9. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    10. John A. List & Azeem M. Shaikh & Yang Xu, 2019. "Multiple hypothesis testing in experimental economics," Experimental Economics, Springer;Economic Science Association, vol. 22(4), pages 773-793, December.
    11. Janssen, Arnold, 1997. "Studentized permutation tests for non-i.i.d. hypotheses and the generalized Behrens-Fisher problem," Statistics & Probability Letters, Elsevier, vol. 36(1), pages 9-21, November.
    12. Soohyung Lee & Azeem M. Shaikh, 2014. "Multiple Testing And Heterogeneous Treatment Effects: Re‐Evaluating The Effect Of Progresa On School Enrollment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 612-626, June.
    13. Chesher, Andrew, 1989. "Hajek Inequalities, Measures of Leverage and the Size of Heteroskedasticity Robust Wald Tests," Econometrica, Econometric Society, vol. 57(4), pages 971-977, July.
    14. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    15. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeffrey D. Michler & Anna Josephson, 2022. "Recent developments in inference: practicalities for applied economics," Chapters, in: A Modern Guide to Food Economics, chapter 11, pages 235-268, Edward Elgar Publishing.
    2. Brennan S Thompson & Matthew D Webb, 2019. "A simple, graphical approach to comparing multiple treatments," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 188-205.
    3. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    4. Guigonan S. Adjognon & Daan van Soest & Jonas Guthoff, 2021. "Reducing Hunger with Payments for Environmental Services (PES): Experimental Evidence from Burkina Faso," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 831-857, May.
    5. John A. List & Azeem M. Shaikh & Yang Xu, 2019. "Multiple hypothesis testing in experimental economics," Experimental Economics, Springer;Economic Science Association, vol. 22(4), pages 773-793, December.
    6. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    7. Agostinelli, Francesco & Avitabile, Ciro & Bobba, Matteo, 2021. "Enhancing Human Capital in Children: A Case Study on Scaling," TSE Working Papers 21-1196, Toulouse School of Economics (TSE), revised Oct 2023.
    8. Joana Elisa Maldonado & Kristof De Witte & Koen Declercq, 2022. "The effects of parental involvement in homework: two randomised controlled trials in financial education," Empirical Economics, Springer, vol. 62(3), pages 1439-1464, March.
    9. Pötscher, Benedikt M. & Preinerstorfer, David, 2023. "How Reliable Are Bootstrap-Based Heteroskedasticity Robust Tests?," Econometric Theory, Cambridge University Press, vol. 39(4), pages 789-847, August.
    10. Capuno, Joseph & Kraft, Aleli & O'Donnell, Owen, 2021. "Effectiveness of clinic-based cardiovascular disease prevention: A randomized encouragement design experiment in the Philippines," Social Science & Medicine, Elsevier, vol. 283(C).
    11. Eszter Czibor & David Jimenez‐Gomez & John A. List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 371-432, October.
    12. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    13. Timothy B. Armstrong & Shu Shen, 2013. "Inference on Optimal Treatment Assignments," Cowles Foundation Discussion Papers 1927RR, Cowles Foundation for Research in Economics, Yale University, revised Apr 2015.
    14. John A. List & Azeem M. Shaikh & Atom Vayalinkal, 2023. "Multiple testing with covariate adjustment in experimental economics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 920-939, September.
    15. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    16. Young, Alwyn, 2024. "Asymptotically robust permutation-based randomization confidence intervals for parametric OLS regression," LSE Research Online Documents on Economics 120933, London School of Economics and Political Science, LSE Library.
    17. Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2018. "Inference in Linear Regression Models with Many Covariates and Heteroscedasticity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1350-1361, July.
    18. Arouna, Aminou & Michler, Jeffrey D. & Lokossou, Jourdain C., 2021. "Contract farming and rural transformation: Evidence from a field experiment in Benin," Journal of Development Economics, Elsevier, vol. 151(C).
    19. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 117855, University Library of Munich, Germany, revised Jul 2023.
    20. Yuehao Bai & Joseph P. Romano & Azeem M. Shaikh, 2022. "Inference in Experiments With Matched Pairs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1726-1737, October.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:101401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.