A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Jinyong Hahn & Keisuke Hirano & Dean Karlan, 2011.
"Adaptive Experimental Design Using the Propensity Score,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 96-108, January.
- Hahn, Jinyong & Hirano, Keisuke & Karlan, Dean, 2011. "Adaptive Experimental Design Using the Propensity Score," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 96-108.
- Hahn, Jinyong & Hirano, Keisuke & Karlan, Dean, 2008. "Adaptive Experimental Design Using the Propensity Score," MPRA Paper 8315, University Library of Munich, Germany.
- Jinyong Hahn & Keisuke Hirano & Dean Karlan, 2009. "Adaptive Experimental Design Using the Propensity Score," Working Papers 969, Economic Growth Center, Yale University.
- Hahn, Jinyong & Hirano, Keisuke & Karlan, Dean, 2009. "Adaptive Experimental Design Using the Propensity Score," Working Papers 59, Yale University, Department of Economics.
- Hahn, Jinyong & Hirano, Keisuke & Karlan, Dean S., 2009. "Adaptive Experimental Design Using the Propensity Score," Center Discussion Papers 47107, Yale University, Economic Growth Center.
- Bingkai Wang & Ryoko Susukida & Ramin Mojtabai & Masoumeh Amin-Esmaeili & Michael Rosenblum, 2023. "Model-Robust Inference for Clinical Trials that Improve Precision by Stratified Randomization and Covariate Adjustment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1152-1163, April.
- Miriam Bruhn & David McKenzie, 2009.
"In Pursuit of Balance: Randomization in Practice in Development Field Experiments,"
American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 200-232, October.
- Bruhn, Miriam & McKenzie, David, 2008. "In pursuit of balance : randomization in practice in development field experiments," Policy Research Working Paper Series 4752, The World Bank.
- John A. List & Azeem M. Shaikh & Yang Xu, 2019.
"Multiple hypothesis testing in experimental economics,"
Experimental Economics, Springer;Economic Science Association, vol. 22(4), pages 773-793, December.
- John List & Azeem Shaikh & Yang Xu, 2016. "Multiple Hypothesis Testing in Experimental Economics," Artefactual Field Experiments 00402, The Field Experiments Website.
- John A. List & Azeem M. Shaikh & Yang Xu, 2016. "Multiple Hypothesis Testing in Experimental Economics," NBER Working Papers 21875, National Bureau of Economic Research, Inc.
- Manski, Charles F, 1990.
"Nonparametric Bounds on Treatment Effects,"
American Economic Review, American Economic Association, vol. 80(2), pages 319-323, May.
- Manski, C.F., 1989. "Nonparametric Bounds On Treatment Effects," Working papers 8909, Wisconsin Madison - Social Systems.
- Charles F. Manski, 2013.
"Identification of treatment response with social interactions,"
Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
- Charles F. Manski, 2010. "Identification of treatment response with social interactions," CeMMAP working papers CWP01/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2021.
"Equality-Minded Treatment Choice,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 561-574, March.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Equality-minded treatment choice," CeMMAP working papers CWP10/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2018. "Equality-minded treatment choice," CeMMAP working papers CWP71/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Romano, Joseph P. & Shaikh, Azeem M. & Wolf, Michael, 2008.
"Formalized Data Snooping Based On Generalized Error Rates,"
Econometric Theory, Cambridge University Press, vol. 24(2), pages 404-447, April.
- Joseph P & Romano & Azeem M. Shaikh & Michael Wolf, 2005. "Formalized Data Snooping Based on Generalized Error Rates," IEW - Working Papers 259, Institute for Empirical Research in Economics - University of Zurich.
- Xin Lu & Tianle Liu & Hanzhong Liu & Peng Ding, 2023. "Design-based theory for cluster rerandomization," Biometrika, Biometrika Trust, vol. 110(2), pages 467-483.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018.
"Inference Under Covariate-Adaptive Randomization,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2015. "Inference under covariate-adaptive randomization," CeMMAP working papers 45/15, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2016. "Inference under Covariate-Adaptive Randomization," CeMMAP working papers CWP21/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2017. "Inference under covariate-adaptive randomization," CeMMAP working papers CWP25/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2016. "Inference under Covariate-Adaptive Randomization," CeMMAP working papers 21/16, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2017. "Inference under covariate-adaptive randomization," CeMMAP working papers 25/17, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2015. "Inference under covariate-adaptive randomization," CeMMAP working papers CWP45/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Keisuke Hirano & Jack R. Porter, 2009.
"Asymptotics for Statistical Treatment Rules,"
Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
- Hirano, Keisuke & Porter, Jack, 2006. "Asymptotics for statistical treatment rules," MPRA Paper 1173, University Library of Munich, Germany.
- Michael P. Leung, 2022.
"Causal Inference Under Approximate Neighborhood Interference,"
Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
- Michael P. Leung, 2019. "Causal Inference Under Approximate Neighborhood Interference," Papers 1911.07085, arXiv.org, revised Nov 2021.
- John A. List & Azeem M. Shaikh & Atom Vayalinkal, 2023.
"Multiple testing with covariate adjustment in experimental economics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(6), pages 920-939, September.
- John List & Azeem Shaikh & Atom Vayalinkal, 2023. "Multiple Testing with Covariate Adjustment in Experimental Economics," Natural Field Experiments 00732, The Field Experiments Website.
- Dehejia, Rajeev H., 2005.
"Program evaluation as a decision problem,"
Journal of Econometrics, Elsevier, vol. 125(1-2), pages 141-173.
- Rajeev Dehejia, 1999. "Program Evaluation as a Decision Problem," NBER Working Papers 6954, National Bureau of Economic Research, Inc.
- Susan Athey & Dean Eckles & Guido W. Imbens, 2018.
"Exact p-Values for Network Interference,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
- Athey, Susan & Eckles, Dean & Imbens, Guido W., 2015. "Exact P-Values for Network Interference," Research Papers 3351, Stanford University, Graduate School of Business.
- Athey, Susan & Eckles, Dean & Imbens, Guido W., 2015. "Exact P-Values for Network Interference," Research Papers 3287, Stanford University, Graduate School of Business.
- Susan Athey & Dean Eckles & Guido W. Imbens, 2015. "Exact P-values for Network Interference," NBER Working Papers 21313, National Bureau of Economic Research, Inc.
- Eric Mbakop & Max Tabord‐Meehan, 2021.
"Model Selection for Treatment Choice: Penalized Welfare Maximization,"
Econometrica, Econometric Society, vol. 89(2), pages 825-848, March.
- Eric Mbakop & Max Tabord-Meehan, 2016. "Model Selection for Treatment Choice: Penalized Welfare Maximization," Papers 1609.03167, arXiv.org, revised Dec 2020.
- Yuehao Bai & Hongchang Guo & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "Inference in Experiments with Matched Pairs and Imperfect Compliance," Papers 2307.13094, arXiv.org, revised Jun 2024.
- Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024.
"At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?,"
American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
- Cl'ement de Chaisemartin & Jaime Ramirez-Cuellar, 2019. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," Papers 1906.00288, arXiv.org, revised Jun 2023.
- Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2022. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," Working Papers hal-03873897, HAL.
- Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2022. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," SciencePo Working papers Main hal-03873897, HAL.
- Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2020. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," NBER Working Papers 27609, National Bureau of Economic Research, Inc.
- Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023.
"Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
- Liang Jiang & Xiaobin Liu & Peter C.B. Phillips & Yichong Zhang, 2021. "Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations," Cowles Foundation Discussion Papers 2288, Cowles Foundation for Research in Economics, Yale University.
- Liang Jiang & Peter C. B. Phillips & Yubo Tao & Yichong Zhang, 2021. "Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations," Papers 2105.14752, arXiv.org, revised Sep 2022.
- Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," Papers 2206.07845, arXiv.org.
- Maximilian Kasy & Anja Sautmann, 2021.
"Adaptive Treatment Assignment in Experiments for Policy Choice,"
Econometrica, Econometric Society, vol. 89(1), pages 113-132, January.
- Maximilian Kasy & Anja Sautmann, 2019. "Adaptive Treatment Assignment in Experiments for Policy Choice," CESifo Working Paper Series 7778, CESifo.
- Toru Kitagawa & Aleksey Tetenov, 2018.
"Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice,"
Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP24/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Carlo Alberto Notebooks 402, Collegio Carlo Alberto.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019.
"Inference under covariate‐adaptive randomization with multiple treatments,"
Quantitative Economics, Econometric Society, vol. 10(4), pages 1747-1785, November.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2017. "Inference under covariate-adaptive randomization with multiple treatments," CeMMAP working papers 34/17, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference under Covariate-Adaptive Randomization with Multiple Treatments," Papers 1806.04206, arXiv.org, revised Jan 2019.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2017. "Inference under covariate-adaptive randomization with multiple treatments," CeMMAP working papers CWP34/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2019. "Inference under covariate-adaptive randomization with multiple treatments," CeMMAP working papers CWP04/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Harold D Chiang & Yukitoshi Matsushita & Taisuke Otsu, 2023. "Regression adjustment in randomized controlled trials with many covariates," Papers 2302.00469, arXiv.org, revised Nov 2023.
- Rachel Glennerster & Kudzai Takavarasha, 2013. "Running Randomized Evaluations: A Practical Guide," Economics Books, Princeton University Press, edition 1, number 10085.
- Karthik Muralidharan & Paul Niehaus, 2017.
"Experimentation at Scale,"
Journal of Economic Perspectives, American Economic Association, vol. 31(4), pages 103-124, Fall.
- Karthik Muralidharan & Paul Niehaus, 2017. "Experimentation at Scale," NBER Working Papers 23957, National Bureau of Economic Research, Inc.
- Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Aug 2024.
- Bai, Yuehao, 2023. "Why randomize? Minimax optimality under permutation invariance," Journal of Econometrics, Elsevier, vol. 232(2), pages 565-575.
- Yuchen Hu & Shuangning Li & Stefan Wager, 2022. "Average direct and indirect causal effects under interference [Estimating average causal effects under general interference, with application to a social network experiment]," Biometrika, Biometrika Trust, vol. 109(4), pages 1165-1172.
- Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
- Jiafeng Chen & Isaiah Andrews, 2023. "Optimal Conditional Inference in Adaptive Experiments," Papers 2309.12162, arXiv.org.
- Machado, Cecilia & Shaikh, Azeem M. & Vytlacil, Edward J., 2019. "Instrumental variables and the sign of the average treatment effect," Journal of Econometrics, Elsevier, vol. 212(2), pages 522-555.
- Bhattacharya, Debopam & Dupas, Pascaline, 2012.
"Inferring welfare maximizing treatment assignment under budget constraints,"
Journal of Econometrics, Elsevier, vol. 167(1), pages 168-196.
- Debopam Bhattacharya & Pascaline Dupas, 2008. "Inferring Welfare Maximizing Treatment Assignment under Budget Constraints," NBER Working Papers 14447, National Bureau of Economic Research, Inc.
- Heckman, James, 2013.
"Sample selection bias as a specification error,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
- Heckman, James J, 1979. "Sample Selection Bias as a Specification Error," Econometrica, Econometric Society, vol. 47(1), pages 153-161, January.
- Yong Cai & Ahnaf Rafi, 2022. "On the Performance of the Neyman Allocation with Small Pilots," Papers 2206.04643, arXiv.org, revised Jun 2024.
- Federico A. Bugni & Mengsi Gao, 2021. "Inference under Covariate-Adaptive Randomization with Imperfect Compliance," Papers 2102.03937, arXiv.org, revised Jul 2023.
- Charles F. Manski, 2004.
"Statistical Treatment Rules for Heterogeneous Populations,"
Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers 03/03, Institute for Fiscal Studies.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers CWP03/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Soohyung Lee & Azeem M. Shaikh, 2014. "Multiple Testing And Heterogeneous Treatment Effects: Re‐Evaluating The Effect Of Progresa On School Enrollment," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 612-626, June.
- Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," American Economic Review, American Economic Association, vol. 112(12), pages 3911-3940, December.
- Guillaume Basse & Avi Feller, 2018. "Analyzing Two-Stage Experiments in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 41-55, January.
- Harrison H. Li & Art B. Owen, 2023. "Double machine learning and design in batch adaptive experiments," Papers 2309.15297, arXiv.org.
- Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
- Keisuke Hirano & Jack R. Porter, 2023. "Asymptotic Representations for Sequential Decisions, Adaptive Experiments, and Batched Bandits," Papers 2302.03117, arXiv.org.
- Akanksha Negi & Jeffrey M. Wooldridge, 2021. "Revisiting regression adjustment in experiments with heterogeneous treatment effects," Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 504-534, April.
- Jason Wu & Peng Ding, 2021. "Randomization Tests for Weak Null Hypotheses in Randomized Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1898-1913, October.
- Davide Viviano & Lihua Lei & Guido Imbens & Brian Karrer & Okke Schrijvers & Liang Shi, 2023. "Causal clustering: design of cluster experiments under network interference," Papers 2310.14983, arXiv.org, revised Jan 2024.
- Vazquez-Bare, Gonzalo, 2023. "Identification and estimation of spillover effects in randomized experiments," Journal of Econometrics, Elsevier, vol. 237(1).
- Samuel Higbee, 2022. "Policy Learning with New Treatments," Papers 2210.04703, arXiv.org, revised Sep 2023.
- Fangzhou Su & Peng Ding, 2021. "Model‐assisted analyses of cluster‐randomized experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 994-1015, November.
- Joseph P. Romano & Michael Wolf, 2005.
"Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 94-108, March.
- Joseph Romano & Michael Wolf, 2003. "Exact and approximate stepdown methods for multiple hypothesis testing," Economics Working Papers 727, Department of Economics and Business, Universitat Pompeu Fabra.
- Jay Bhattacharya & Azeem M. Shaikh & Edward Vytlacil, 2008. "Treatment Effect Bounds under Monotonicity Assumptions: An Application to Swan-Ganz Catheterization," American Economic Review, American Economic Association, vol. 98(2), pages 351-356, May.
- Xinran Li & Peng Ding, 2017. "General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1759-1769, October.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
- Chan Park & Hyunseung Kang, 2023. "Assumption-Lean Analysis of Cluster Randomized Trials in Infectious Diseases for Intent-to-Treat Effects and Network Effects," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1195-1206, April.
- Laura Forastiere & Edoardo M. Airoldi & Fabrizia Mealli, 2021. "Identification and Estimation of Treatment and Interference Effects in Observational Studies on Networks," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 901-918, April.
- Yuehao Bai & Joseph P. Romano & Azeem M. Shaikh, 2022.
"Inference in Experiments With Matched Pairs,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1726-1737, October.
- Azeem M. Shaikh, 2019. "Inference in Experiments with Matched Pairs," CeMMAP working papers CWP19/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Nicole E. Pashley & Luke W. Miratrix, 2021. "Insights on Variance Estimation for Blocked and Matched Pairs Designs," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 271-296, June.
- Bhattacharya, Jay & Shaikh, Azeem M. & Vytlacil, Edward, 2012.
"Treatment effect bounds: An application to Swan–Ganz catheterization,"
Journal of Econometrics, Elsevier, vol. 168(2), pages 223-243.
- Jay Bhattacharya & Azeem Shaikh & Edward Vytlacil, 2005. "Treatment Effect Bounds: An Application to Swan-Ganz Catheterization," NBER Working Papers 11263, National Bureau of Economic Research, Inc.
- Imbens, Guido W & Angrist, Joshua D, 1994.
"Identification and Estimation of Local Average Treatment Effects,"
Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
- Joshua D. Angrist & Guido W. Imbens, 1995. "Identification and Estimation of Local Average Treatment Effects," NBER Technical Working Papers 0118, National Bureau of Economic Research, Inc.
- Max Cytrynbaum, 2021. "Optimal Stratification of Survey Experiments," Papers 2111.08157, arXiv.org, revised Aug 2023.
- Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
- G W Basse & A Feller & P Toulis, 2019. "Randomization tests of causal effects under interference," Biometrika, Biometrika Trust, vol. 106(2), pages 487-494.
- Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
- Nathan Kallus, 2021. "On the optimality of randomization in experimental design: How to randomize for minimax variance and design‐based inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 404-409, April.
- Harold D Chiang & Yukitoshi Matsushita & Taisuke Otsu, 2023. "Regression adjustment in randomized controlled trials with many covariates," STICERD - Econometrics Paper Series 627, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Mengsi Gao & Peng Ding, 2023. "Causal inference in network experiments: regression-based analysis and design-based properties," Papers 2309.07476, arXiv.org, revised Nov 2023.
- Kosuke Imai & Zhichao Jiang & Anup Malani, 2021. "Causal Inference With Interference and Noncompliance in Two-Stage Randomized Experiments," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 632-644, April.
- Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
- Yuchen Hu & Shuangning Li & Stefan Wager, 2021. "Average Direct and Indirect Causal Effects under Interference," Papers 2104.03802, arXiv.org, revised Jan 2022.
- Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
- Eduardo M. Azevedo & Alex Deng & José Luis Montiel Olea & Justin Rao & E. Glen Weyl, 2020. "A/B Testing with Fat Tails," Journal of Political Economy, University of Chicago Press, vol. 128(12), pages 4614-4000.
- Zach Branson & inran Li & Peng Ding, 2024. "Power and sample size calculations for rerandomization," Biometrika, Biometrika Trust, vol. 111(1), pages 355-363.
- Yichong Zhang & Xin Zheng, 2020. "Quantile treatment effects and bootstrap inference under covariate‐adaptive randomization," Quantitative Economics, Econometric Society, vol. 11(3), pages 957-982, July.
- Ahnaf Rafi, 2023. "Efficient Semiparametric Estimation of Average Treatment Effects Under Covariate Adaptive Randomization," Papers 2305.08340, arXiv.org.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Fang Han, 2024. "An Introduction to Permutation Processes (version 0.5)," Papers 2407.09664, arXiv.org.
- Laurent Davezies & Guillaume Hollard & Pedro Vergara Merino, 2024. "Revisiting Randomization with the Cube Method," Papers 2407.13613, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
- Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
- Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
- Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
- Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Susan Athey & Guido Imbens, 2016. "The Econometrics of Randomized Experiments," Papers 1607.00698, arXiv.org.
- Tadao Hoshino & Takahide Yanagi, 2021. "Causal Inference with Noncompliance and Unknown Interference," Papers 2108.07455, arXiv.org, revised Oct 2023.
- Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
- Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
- Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023.
"Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
- Liang Jiang & Xiaobin Liu & Peter C.B. Phillips & Yichong Zhang, 2021. "Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations," Cowles Foundation Discussion Papers 2288, Cowles Foundation for Research in Economics, Yale University.
- Liang Jiang & Peter C. B. Phillips & Yubo Tao & Yichong Zhang, 2021. "Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations," Papers 2105.14752, arXiv.org, revised Sep 2022.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
- Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
- David M. Ritzwoller & Joseph P. Romano & Azeem M. Shaikh, 2024. "Randomization Inference: Theory and Applications," Papers 2406.09521, arXiv.org.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Liang Jiang & Oliver B. Linton & Haihan Tang & Yichong Zhang, 2022. "Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance," Papers 2201.13004, arXiv.org, revised Jun 2023.
- Anders Bredahl Kock & David Preinerstorfer, 2024. "Regularizing Discrimination in Optimal Policy Learning with Distributional Targets," Papers 2401.17909, arXiv.org.
- Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Aug 2024.
- Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-EXP-2024-06-10 (Experimental Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.03910. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.