IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1506.02084.html
   My bibliography  Save this paper

Exact P-values for Network Interference

Author

Listed:
  • Susan Athey
  • Dean Eckles
  • Guido Imbens

Abstract

We study the calculation of exact p-values for a large class of non-sharp null hypotheses about treatment effects in a setting with data from experiments involving members of a single connected network. The class includes null hypotheses that limit the effect of one unit's treatment status on another according to the distance between units; for example, the hypothesis might specify that the treatment status of immediate neighbors has no effect, or that units more than two edges away have no effect. We also consider hypotheses concerning the validity of sparsification of a network (for example based on the strength of ties) and hypotheses restricting heterogeneity in peer effects (so that, for example, only the number or fraction treated among neighboring units matters). Our general approach is to define an artificial experiment, such that the null hypothesis that was not sharp for the original experiment is sharp for the artificial experiment, and such that the randomization analysis for the artificial experiment is validated by the design of the original experiment.

Suggested Citation

  • Susan Athey & Dean Eckles & Guido Imbens, 2015. "Exact P-values for Network Interference," Papers 1506.02084, arXiv.org.
  • Handle: RePEc:arx:papers:1506.02084
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1506.02084
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Eckles Dean & Karrer Brian & Ugander Johan, 2017. "Design and Analysis of Experiments in Networks: Reducing Bias from Interference," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-23, March.
    2. Paul Goldsmith-Pinkham & Guido W. Imbens, 2013. "Social Networks and the Identification of Peer Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 253-264, July.
    3. Sarah Baird & Aislinn Bohren & Berk Ozler & Craig McIntosh, 2014. "Designing Experiments to Measure Spillover Effects," Working Papers 2014-11, The George Washington University, Institute for International Economic Policy.
    4. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    5. Rosenbaum, Paul R., 2007. "Interference Between Units in Randomized Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 191-200, March.
    6. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    7. Charles F. Manski & Elie Tamer, 2002. "Inference on Regressions with Interval Data on a Regressor or Outcome," Econometrica, Econometric Society, vol. 70(2), pages 519-546, March.
    8. Scott E. Carrell & Bruce I. Sacerdote & James E. West, 2013. "From Natural Variation to Optimal Policy? The Importance of Endogenous Peer Group Formation," Econometrica, Econometric Society, vol. 81(3), pages 855-882, May.
    9. Peter M. Aronow, 2012. "A General Method for Detecting Interference Between Units in Randomized Experiments," Sociological Methods & Research, , vol. 41(1), pages 3-16, February.
    10. Heller, Ruth & Rosenbaum, Paul R. & Small, Dylan S., 2009. "Split Samples and Design Sensitivity in Observational Studies," Journal of the American Statistical Association, American Statistical Association, vol. 104(487), pages 1090-1101.
    11. Bruce Sacerdote, 2001. "Peer Effects with Random Assignment: Results for Dartmouth Roommates," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 681-704.
    12. Thomas Barrios & Rebecca Diamond & Guido W. Imbens & Michal Kolesár, 2012. "Clustering, Spatial Correlations, and Randomization Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 578-591, June.
    13. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, November.
    14. Robert M. Bond & Christopher J. Fariss & Jason J. Jones & Adam D. I. Kramer & Cameron Marlow & Jaime E. Settle & James H. Fowler, 2012. "A 61-million-person experiment in social influence and political mobilization," Nature, Nature, vol. 489(7415), pages 295-298, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susan Athey & Guido Imbens, 2016. "The Econometrics of Randomized Experiments," Papers 1607.00698, arXiv.org.
    2. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    3. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    4. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    5. Yann Algan & Quoc-Anh Do & Nicolò Dalvit & Alexis Le Chapelain & Yves Zenou, 2015. "How Social Networks Shape Our Beliefs: A Natural Experiment among Future French Politicians," Working Papers hal-03459820, HAL.
    6. repec:spo:wpmain:info:hdl:2441/78vacv4udu92eq3fec89svm9uv is not listed on IDEAS
    7. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
    8. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    9. Guillaume Basse & Peng Ding & Avi Feller & Panos Toulis, 2024. "Randomization Tests for Peer Effects in Group Formation Experiments," Econometrica, Econometric Society, vol. 92(2), pages 567-590, March.
    10. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    11. repec:hal:spmain:info:hdl:2441/78vacv4udu92eq3fec89svm9uv is not listed on IDEAS
    12. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
    13. Yann Algan & Quoc-Anh Do & Nicolò Dalvit & Alexis Le Chapelain & Yves Zenou, 2015. "How Social Networks Shape Our Beliefs: A Natural Experiment among Future French Politicians," Working Papers hal-03459820, HAL.
    14. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    15. William C. Horrace & Hyunseok Jung & Jonathan L. Presler & Amy Ellen Schwartz, 2025. "What makes a classmate a peer? Examining which peers matter in NYC elementary schools," Journal of Population Economics, Springer;European Society for Population Economics, vol. 38(3), pages 1-28, September.
    16. James E. Alt & Amalie Jensen & Horacio Larreguy & David D. Lassen & John Marshall, 2022. "Diffusing Political Concerns: How Unemployment Information Passed between Social Ties Influences Danish Voters," Post-Print hal-03566206, HAL.
    17. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    18. Ariel Boyarsky & Hongseok Namkoong & Jean Pouget-Abadie, 2023. "Modeling Interference Using Experiment Roll-out," Papers 2305.10728, arXiv.org, revised Aug 2023.
    19. Oleg Poldin & Diliara Valeeva & Maria Yudkevich, 2016. "Which Peers Matter: How Social Ties Affect Peer-group Effects," Research in Higher Education, Springer;Association for Institutional Research, vol. 57(4), pages 448-468, June.
    20. Bryan S. Graham, 2019. "Network Data," Papers 1912.06346, arXiv.org.
    21. Ainhoa Aparicio-Fenoll & Veruska Oppedisano, 2016. "Should I stay or should I go? Sibling effects in household formation," Review of Economics of the Household, Springer, vol. 14(4), pages 1007-1027, December.
    22. Camila F. S. Campos & Shaun Hargreaves Heap & Fernanda Leite Lopez de Leon, 2017. "The political influence of peer groups: experimental evidence in the classroom," Oxford Economic Papers, Oxford University Press, vol. 69(4), pages 963-985.

    More about this item

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1506.02084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.