Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Eckles Dean & Karrer Brian & Ugander Johan, 2017. "Design and Analysis of Experiments in Networks: Reducing Bias from Interference," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-23, March.
- Itzik Fadlon & Torben Heien Nielsen, 2019.
"Family Health Behaviors,"
American Economic Review, American Economic Association, vol. 109(9), pages 3162-3191, September.
- Itzik Fadlon & Torben Heien Nielsen, 2017. "Family Health Behaviors," NBER Working Papers 24042, National Bureau of Economic Research, Inc.
- Itzik Fadlon & Torben Heien Nielsen, 2017. "Family Health Behaviors," EPRU Working Paper Series 17-05, Economic Policy Research Unit (EPRU), University of Copenhagen. Department of Economics.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Michael P. Leung, 2022.
"Causal Inference Under Approximate Neighborhood Interference,"
Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
- Michael P. Leung, 2019. "Causal Inference Under Approximate Neighborhood Interference," Papers 1911.07085, arXiv.org, revised Nov 2021.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Xi Luo & Dylan S. Small & Chiang-Shan R. Li & Paul R. Rosenbaum, 2012. "Inference With Interference Between Units in an fMRI Experiment of Motor Inhibition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 530-541, June.
- Susan Athey & Dean Eckles & Guido W. Imbens, 2018.
"Exact p-Values for Network Interference,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
- Athey, Susan & Eckles, Dean & Imbens, Guido W., 2015. "Exact P-Values for Network Interference," Research Papers 3351, Stanford University, Graduate School of Business.
- Athey, Susan & Eckles, Dean & Imbens, Guido W., 2015. "Exact P-Values for Network Interference," Research Papers 3287, Stanford University, Graduate School of Business.
- Susan Athey & Dean Eckles & Guido W. Imbens, 2015. "Exact P-values for Network Interference," NBER Working Papers 21313, National Bureau of Economic Research, Inc.
- Heckman, James J & Lochner, Lance & Taber, Christopher, 1998.
"General-Equilibrium Treatment Effects: A Study of Tuition Policy,"
American Economic Review, American Economic Association, vol. 88(2), pages 381-386, May.
- James J. Heckman & Lance Lochner & Christopher Taber, 1998. "General Equilibrium Treatment Effects: A Study of Tuition Policy," NBER Working Papers 6426, National Bureau of Economic Research, Inc.
- Charles F. Manski, 1993.
"Identification of Endogenous Social Effects: The Reflection Problem,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
- Manski, Charles F., 1991. "Identification of Endogenous Social Effects: The Reflection Problem," SSRI Workshop Series 292712, University of Wisconsin-Madison, Social Systems Research Institute.
- Manski, C.F., 1991. "Identification of Endogenous Social Effects: the Reflection Problem," Working papers 9127, Wisconsin Madison - Social Systems.
- Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2009.
"Identification of peer effects through social networks,"
Journal of Econometrics, Elsevier, vol. 150(1), pages 41-55, May.
- Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2007. "Identification of Peer Effects through Social Networks," IZA Discussion Papers 2652, Institute of Labor Economics (IZA).
- Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2007. "Identification of Peer Effects through Social Networks," Cahiers de recherche 0705, CIRPEE.
- Esther Duflo & Pascaline Dupas & Michael Kremer, 2011.
"Peer Effects, Teacher Incentives, and the Impact of Tracking: Evidence from a Randomized Evaluation in Kenya,"
American Economic Review, American Economic Association, vol. 101(5), pages 1739-1774, August.
- Esther Duflo & Pascaline Dupas & Michael Kremer, 2008. "Peer Effects, Teacher Incentives, and the Impact of Tracking: Evidence from a Randomized Evaluation in Kenya," NBER Working Papers 14475, National Bureau of Economic Research, Inc.
- Kremer, Michael & Duflo, Esther & Dupas, Pascaline, 2008. "Peer Effects, Teacher Incentives, and the Impact of Tracking: Evidence from a Randomized Evaluation in Kenya," CEPR Discussion Papers 7043, C.E.P.R. Discussion Papers.
- Paul Goldsmith-Pinkham & Guido W. Imbens, 2013. "Social Networks and the Identification of Peer Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 253-264, July.
- Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
- Newey, Whitney K, 1994.
"The Asymptotic Variance of Semiparametric Estimators,"
Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
- Newey, W.K., 1989. "The Asymptotic Variance Of Semiparametric Estimotors," Papers 346, Princeton, Department of Economics - Econometric Research Program.
- Newey, W.K., 1991. "The Asymptotic Variance of Semiparametric Estimators," Working papers 583, Massachusetts Institute of Technology (MIT), Department of Economics.
- Bruce Sacerdote, 2001.
"Peer Effects with Random Assignment: Results for Dartmouth Roommates,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 116(2), pages 681-704.
- Bruce Sacerdote, 2000. "Peer Effects with Random Assignment: Results for Dartmouth Roommates," NBER Working Papers 7469, National Bureau of Economic Research, Inc.
- Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003.
"Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score,"
Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
- Guido Imbens, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometric Society World Congress 2000 Contributed Papers 1166, Econometric Society.
- Edward Miguel & Michael Kremer, 2004. "Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities," Econometrica, Econometric Society, vol. 72(1), pages 159-217, January.
- Guillaume Basse & Avi Feller, 2018. "Analyzing Two-Stage Experiments in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 41-55, January.
- Johari, Ramesh & Li, Hannah & Weintraub, Gabriel, 2020. "Experimental Design in Two-Sided Platforms: An Analysis of Bias," Research Papers 3859, Stanford University, Graduate School of Business.
- Rosenbaum, Paul R., 2007. "Interference Between Units in Randomized Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 191-200, March.
- L. Liu & M. G. Hudgens & S. Becker-Dreps, 2016. "On inverse probability-weighted estimators in the presence of interference," Biometrika, Biometrika Trust, vol. 103(4), pages 829-842.
- Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
- G W Basse & A Feller & P Toulis, 2019. "Randomization tests of causal effects under interference," Biometrika, Biometrika Trust, vol. 106(2), pages 487-494.
- Richard Karlsson Linnér & Pietro Biroli & Edward Kong & S. Fleur W. Meddens & Robee Wedow & Mark Alan Fontana & Maël Lebreton & Abdel Abdellaoui & Anke R. Hammerschlag & Michel G. Nivard & Aysu Okba, 2018. "Genome-wide association analyses of risk tolerance and risky behaviors in over one million individuals identify hundreds of loci and shared genetic influences," Working Papers 2018-087, Human Capital and Economic Opportunity Working Group.
- Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
- Lan Liu & Michael G. Hudgens, 2014. "Large Sample Randomization Inference of Causal Effects in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 288-301, March.
- Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
- Yuchen Hu & Shuangning Li & Stefan Wager, 2021. "Average Direct and Indirect Causal Effects under Interference," Papers 2104.03802, arXiv.org, revised Jan 2022.
- Matias D. Cattaneo, 2010. "multi-valued treatment effects," The New Palgrave Dictionary of Economics,, Palgrave Macmillan.
- Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
- Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
- J Pouget-Abadie & G Saint-Jacques & M Saveski & W Duan & S Ghosh & Y Xu & E M Airoldi, 2019. "Testing for arbitrary interference on experimentation platforms," Biometrika, Biometrika Trust, vol. 106(4), pages 929-940.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ruonan Xu, 2023. "Difference-in-Differences with Interference," Papers 2306.12003, arXiv.org, revised May 2024.
- Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
- Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021.
"A unified framework for efficient estimation of general treatment models,"
Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2018. "A Unified Framework for Efficient Estimation of General Treatment Models," Papers 1808.04936, arXiv.org, revised Aug 2018.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," CeMMAP working papers CWP64/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ai, C. & Linton, O. & Motegi, K. & Zhang, Z., 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," Cambridge Working Papers in Economics 1934, Faculty of Economics, University of Cambridge.
- Susan Athey & Guido W. Imbens, 2017.
"The State of Applied Econometrics: Causality and Policy Evaluation,"
Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
- Susan Athey & Guido Imbens, 2016. "The State of Applied Econometrics - Causality and Policy Evaluation," Papers 1607.00699, arXiv.org.
- Michael P. Leung, 2022.
"Causal Inference Under Approximate Neighborhood Interference,"
Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
- Michael P. Leung, 2019. "Causal Inference Under Approximate Neighborhood Interference," Papers 1911.07085, arXiv.org, revised Nov 2021.
- Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2019.
"Non-separable models with high-dimensional data,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 646-677.
- Su, Liangjun & Ura, Takuya & Zhang, Yichong, 2017. "Non-separable Models with High-dimensional Data," Economics and Statistics Working Papers 15-2017, Singapore Management University, School of Economics.
- Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
- Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
- Yusuke Narita & Shota Yasui & Kohei Yata, 2018. "Efficient Counterfactual Learning from Bandit Feedback," Cowles Foundation Discussion Papers 2155, Cowles Foundation for Research in Economics, Yale University.
- Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020.
"Peer Effects in Networks: A Survey,"
Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
- Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2019. "Peer Effects in Networks: a Survey," CEPR Discussion Papers 14260, C.E.P.R. Discussion Papers.
- Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: a Survey," AMSE Working Papers 1936, Aix-Marseille School of Economics, France.
- Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2020. "Peer Effects in Networks: A Survey," IZA Discussion Papers 12947, Institute of Labor Economics (IZA).
- Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," CIRANO Working Papers 2020s-02, CIRANO.
- Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2019. "Peer Effects in Networks: a Survey," Working Papers halshs-02440709, HAL.
- Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Post-Print hal-03072119, HAL.
- Guido W. Imbens & Jeffrey M. Wooldridge, 2009.
"Recent Developments in the Econometrics of Program Evaluation,"
Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
- Guido M. Imbens & Jeffrey M. Wooldridge, 2008. "Recent Developments in the Econometrics of Program Evaluation," NBER Working Papers 14251, National Bureau of Economic Research, Inc.
- Wooldridge, Jeffrey M. & Imbens, Guido, 2009. "Recent Developments in the Econometrics of Program Evaluation," Scholarly Articles 3043416, Harvard University Department of Economics.
- Guido Imbens & Jeffrey M. Wooldridge, 2008. "Recent developments in the econometrics of program evaluation," CeMMAP working papers CWP24/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Imbens, Guido W. & Wooldridge, Jeffrey M., 2008. "Recent Developments in the Econometrics of Program Evaluation," IZA Discussion Papers 3640, Institute of Labor Economics (IZA).
- Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
- Difang Huang & Jiti Gao & Tatsushi Oka, 2022.
"Semiparametric Single-Index Estimation for Average Treatment Effects,"
Papers
2206.08503, arXiv.org, revised Apr 2024.
- Difang Huang & Jiti Gao & Tatsushi Oka, 2022. "Semiparametric Single-Index Estimation for Average Treatment Effects," Monash Econometrics and Business Statistics Working Papers 10/22, Monash University, Department of Econometrics and Business Statistics.
- William C. Horrace & Hyunseok Jung & Shane Sanders, 2022.
"Network Competition and Team Chemistry in the NBA,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 35-49, January.
- William C. Horrace & Hyunseok Jung & Shane Sanders, 2020. "Network Competition and Team Chemistry in the NBA," Center for Policy Research Working Papers 226, Center for Policy Research, Maxwell School, Syracuse University.
- Farrell, Max H., 2015.
"Robust inference on average treatment effects with possibly more covariates than observations,"
Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
- Max H. Farrell, 2013. "Robust Inference on Average Treatment Effects with Possibly More Covariates than Observations," Papers 1309.4686, arXiv.org, revised Feb 2018.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
- Tadao Hoshino & Takahide Yanagi, 2021. "Causal Inference with Noncompliance and Unknown Interference," Papers 2108.07455, arXiv.org, revised Oct 2023.
- Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-08-23 (Econometrics)
- NEP-ISF-2021-08-23 (Islamic Finance)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2107.12420. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.