IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0278937.html
   My bibliography  Save this article

How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign

Author

Listed:
  • Henrika Langen
  • Martin Huber

Abstract

We apply causal machine learning algorithms to assess the causal effect of a marketing intervention, namely a coupon campaign, on the sales of a retailer. Besides assessing the average impacts of different types of coupons, we also investigate the heterogeneity of causal effects across different subgroups of customers, e.g., between clients with relatively high vs. low prior purchases. Finally, we use optimal policy learning to determine (in a data-driven way) which customer groups should be targeted by the coupon campaign in order to maximize the marketing intervention’s effectiveness in terms of sales. We find that only two out of the five coupon categories examined, namely coupons applicable to the product categories of drugstore items and other food, have a statistically significant positive effect on retailer sales. The assessment of group average treatment effects reveals substantial differences in the impact of coupon provision across customer groups, particularly across customer groups as defined by prior purchases at the store, with drugstore coupons being particularly effective among customers with high prior purchases and other food coupons among customers with low prior purchases. Our study provides a use case for the application of causal machine learning in business analytics to evaluate the causal impact of specific firm policies (like marketing campaigns) for decision support.

Suggested Citation

  • Henrika Langen & Martin Huber, 2023. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-37, January.
  • Handle: RePEc:plo:pone00:0278937
    DOI: 10.1371/journal.pone.0278937
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0278937
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0278937&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0278937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    4. Asnat Greenstein-Messica & Lior Rokach & Asaf Shabtai, 2017. "Personal-discount sensitivity prediction for mobile coupon conversion optimization," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(8), pages 1940-1952, August.
    5. Robert Donnelly & Francisco J. R. Ruiz & David Blei & Susan Athey, 2021. "Correction to: Counterfactual inference for consumer choice across many product categories," Quantitative Marketing and Economics (QME), Springer, vol. 19(3), pages 409-409, December.
    6. Feihong Xia & Rabikar Chatterjee & Jerrold H. May, 2019. "Using Conditional Restricted Boltzmann Machines to Model Complex Consumer Shopping Patterns," Marketing Science, INFORMS, vol. 38(4), pages 711-727, July.
    7. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    8. Jagmohan S. Raju & Sanjay K. Dhar & Donald G. Morrison, 1994. "The Effect of Package Coupons on Brand Choice," Marketing Science, INFORMS, vol. 13(2), pages 145-164.
    9. Ren, Xinxin & Cao, Jingjing & Xu, Xianhao & Gong, Yeming (Yale), 2021. "A two-stage model for forecasting consumers’ intention to purchase with e-coupons," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
    10. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    11. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    12. Scott A. Neslin, 1990. "A Market Response Model for Coupon Promotions," Marketing Science, INFORMS, vol. 9(2), pages 125-145.
    13. Martin Huber & Andreas Steinmayr, 2021. "A Framework for Separating Individual-Level Treatment Effects From Spillover Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 422-436, March.
    14. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    15. Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Causal Machine-Learning Approach," Papers 2103.10251, arXiv.org, revised Sep 2021.
    16. Xinxin Ren & Jingjing Cao & Xianhao Xu & Yeming Gong, 2021. "A two-stage model for forecasting consumers' intention to purchase with e-coupons," Post-Print hal-03188221, HAL.
    17. Imke Reimers & Claire (Chunying) Xie, 2019. "Do Coupons Expand or Cannibalize Revenue? Evidence from an e-Market," Management Science, INFORMS, vol. 65(1), pages 286-300, January.
    18. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    19. Eric T. Anderson & Duncan I. Simester, 2004. "Long-Run Effects of Promotion Depth on New Versus Established Customers: Three Field Studies," Marketing Science, INFORMS, vol. 23(1), pages 4-20, February.
    20. Jeongwen Chiang, 1995. "Competing Coupon Promotions and Category Sales," Marketing Science, INFORMS, vol. 14(1), pages 105-122.
    21. Robert Donnelly & Francisco J.R. Ruiz & David Blei & Susan Athey, 2021. "Counterfactual inference for consumer choice across many product categories," Quantitative Marketing and Economics (QME), Springer, vol. 19(3), pages 369-407, December.
    22. Baohong Sun, 2005. "Promotion Effect on Endogenous Consumption," Marketing Science, INFORMS, vol. 24(3), pages 430-443, July.
    23. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    24. Michelle Andrews & Xueming Luo & Zheng Fang & Anindya Ghose, 2016. "Mobile Ad Effectiveness: Hyper-Contextual Targeting with Crowdedness," Marketing Science, INFORMS, vol. 35(2), pages 218-233, March.
    25. Anindya Ghose & Hyeokkoo Eric Kwon & Dongwon Lee & Wonseok Oh, 2019. "Seizing the Commuting Moment: Contextual Targeting Based on Mobile Transportation Apps," Service Science, INFORMS, vol. 30(1), pages 154-174, March.
    26. Arun Gopalakrishnan & Zhenling Jiang & Yulia Nevskaya & Raphael Thomadsen, 2021. "Can Non-tiered Customer Loyalty Programs Be Profitable?," Decision Analysis, INFORMS, vol. 40(3), pages 508-526, May-June.
    27. Glynn, Adam N. & Quinn, Kevin M., 2010. "An Introduction to the Augmented Inverse Propensity Weighted Estimator," Political Analysis, Cambridge University Press, vol. 18(1), pages 36-56, January.
    28. Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
    29. Mark Lycett, 2013. "‘Datafication’: making sense of (big) data in a complex world," European Journal of Information Systems, Taylor & Francis Journals, vol. 22(4), pages 381-386, July.
    30. Vira Semenova & Victor Chernozhukov, 2021. "Debiased machine learning of conditional average treatment effects and other causal functions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 264-289.
    31. Arun Gopalakrishnan & Zhenling Jiang & Yulia Nevskaya & Raphael Thomadsen, 2021. "Can Non-tiered Customer Loyalty Programs Be Profitable?," Marketing Science, INFORMS, vol. 40(3), pages 508-526, May.
    32. Brett R. Gordon & Robert Moakler & Florian Zettelmeyer, 2023. "Close Enough? A Large-Scale Exploration of Non-Experimental Approaches to Advertising Measurement," Marketing Science, INFORMS, vol. 42(4), pages 768-793, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
    2. Achim Ahrens & Alessandra Stampi‐Bombelli & Selina Kurer & Dominik Hangartner, 2024. "Optimal multi‐action treatment allocation: A two‐phase field experiment to boost immigrant naturalization," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1379-1395, November.
    3. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Papers 2201.07072, arXiv.org, revised Apr 2023.
    4. Takanori Ida & Takunori Ishihara & Koichiro Ito & Daido Kido & Toru Kitagawa & Shosei Sakaguchi & Shusaku Sasaki, 2022. "Choosing Who Chooses: Selection-Driven Targeting in Energy Rebate Programs," NBER Working Papers 30469, National Bureau of Economic Research, Inc.
    5. Takanori Ida & Takunori Ishihara & Koichiro Ito & Daido Kido & Toru Kitagawa & Shosei Sakaguchi & Shusaku Sasaki, 2021. "Paternalism, Autonomy, or Both? Experimental Evidence from Energy Saving Programs," Papers 2112.09850, arXiv.org.
    6. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    8. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    9. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    10. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    11. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    12. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org, revised Apr 2025.
    13. Cordier, J.; & Salvi, I.; & Steinbeck, V.; & Geissler, A.; & Vogel, J.;, 2023. "Is rapid recovery always the best recovery? - Developing a machine learning approach for optimal assignment rules under capacity constraints for knee replacement patients," Health, Econometrics and Data Group (HEDG) Working Papers 23/08, HEDG, c/o Department of Economics, University of York.
    14. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    15. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    16. Yuchen Hu & Henry Zhu & Emma Brunskill & Stefan Wager, 2024. "Minimax-Regret Sample Selection in Randomized Experiments," Papers 2403.01386, arXiv.org, revised Jun 2024.
    17. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    18. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    19. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    20. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.