How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pone.0278937
Download full text from publisher
Other versions of this item:
- Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
References listed on IDEAS
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Feihong Xia & Rabikar Chatterjee & Jerrold H. May, 2019. "Using Conditional Restricted Boltzmann Machines to Model Complex Consumer Shopping Patterns," Marketing Science, INFORMS, vol. 38(4), pages 711-727, July.
- Toru Kitagawa & Aleksey Tetenov, 2018.
"Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice,"
Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP24/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Carlo Alberto Notebooks 402, Collegio Carlo Alberto.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Susan Athey & Stefan Wager, 2021.
"Policy Learning With Observational Data,"
Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
- Susan Athey & Stefan Wager, 2017. "Policy Learning with Observational Data," Papers 1702.02896, arXiv.org, revised Sep 2020.
- Huber, Martin & Meier, Jonas & Wallimann, Hannes, 2022.
"Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets,"
Transportation Research Part B: Methodological, Elsevier, vol. 163(C), pages 22-39.
- Martin Huber & Jonas Meier & Hannes Wallimann, 2021. "Business analytics meets artificial intelligence: Assessing the demand effects of discounts on Swiss train tickets," Papers 2105.01426, arXiv.org, revised Jun 2022.
- Xinxin Ren & Jingjing Cao & Xianhao Xu & Yeming Gong, 2021. "A two-stage model for forecasting consumers' intention to purchase with e-coupons," Post-Print hal-03188221, HAL.
- Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
- Jianwei Xing & Eric Yongchen Zou & Zhentoa Yin & Yong Wang & Zhenhua Li, 2023.
""Quick Response" Economic Stimulus: The Effect of Small-Value Digital Coupons on Spending,"
American Economic Journal: Macroeconomics, American Economic Association, vol. 15(4), pages 249-304, October.
- Jianwei Xing & Eric Zou & Zhentao Yin & Yong Wang & Zhenhua Li, 2020. ""Quick Response" Economic Stimulus: The Effect of Small-Value Digital Coupons on Spending," NBER Working Papers 27596, National Bureau of Economic Research, Inc.
- Erevelles, Sunil & Fukawa, Nobuyuki & Swayne, Linda, 2016. "Big Data consumer analytics and the transformation of marketing," Journal of Business Research, Elsevier, vol. 69(2), pages 897-904.
- Jeongwen Chiang, 1995. "Competing Coupon Promotions and Category Sales," Marketing Science, INFORMS, vol. 14(1), pages 105-122.
- Robert Donnelly & Francisco J.R. Ruiz & David Blei & Susan Athey, 2021.
"Counterfactual inference for consumer choice across many product categories,"
Quantitative Marketing and Economics (QME), Springer, vol. 19(3), pages 369-407, December.
- Rob Donnelly & Francisco R. Ruiz & David Blei & Susan Athey, 2019. "Counterfactual Inference for Consumer Choice Across Many Product Categories," Papers 1906.02635, arXiv.org, revised Aug 2023.
- Baohong Sun, 2005. "Promotion Effect on Endogenous Consumption," Marketing Science, INFORMS, vol. 24(3), pages 430-443, July.
- Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
- Keisuke Hirano & Jack R. Porter, 2009.
"Asymptotics for Statistical Treatment Rules,"
Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
- Hirano, Keisuke & Porter, Jack, 2006. "Asymptotics for statistical treatment rules," MPRA Paper 1173, University Library of Munich, Germany.
- Mekhail Mustak & Joni Salminen & Loïc Plé & Jochen Wirtz, 2021. "Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda," Post-Print hal-03269994, HAL.
- Anindya Ghose & Hyeokkoo Eric Kwon & Dongwon Lee & Wonseok Oh, 2019. "Seizing the Commuting Moment: Contextual Targeting Based on Mobile Transportation Apps," Service Science, INFORMS, vol. 30(1), pages 154-174, March.
- Arun Gopalakrishnan & Zhenling Jiang & Yulia Nevskaya & Raphael Thomadsen, 2021. "Can Non-tiered Customer Loyalty Programs Be Profitable?," Decision Analysis, INFORMS, vol. 40(3), pages 508-526, May-June.
- Choi, Pilsik & Coulter, Keith S., 2012. "It's Not All Relative: The Effects of Mental and Physical Positioning of Comparative Prices on Absolute versus Relative Discount Assessment," Journal of Retailing, Elsevier, vol. 88(4), pages 512-527.
- Ma, Liye & Sun, Baohong, 2020. "Machine learning and AI in marketing – Connecting computing power to human insights," International Journal of Research in Marketing, Elsevier, vol. 37(3), pages 481-504.
- Mark Lycett, 2013. "‘Datafication’: making sense of (big) data in a complex world," European Journal of Information Systems, Taylor & Francis Journals, vol. 22(4), pages 381-386, July.
- Arun Gopalakrishnan & Zhenling Jiang & Yulia Nevskaya & Raphael Thomadsen, 2021. "Can Non-tiered Customer Loyalty Programs Be Profitable?," Marketing Science, INFORMS, vol. 40(3), pages 508-526, May.
- Brett R. Gordon & Robert Moakler & Florian Zettelmeyer, 2023.
"Close Enough? A Large-Scale Exploration of Non-Experimental Approaches to Advertising Measurement,"
Marketing Science, INFORMS, vol. 42(4), pages 768-793, July.
- Brett R. Gordon & Robert Moakler & Florian Zettelmeyer, 2022. "Close Enough? A Large-Scale Exploration of Non-Experimental Approaches to Advertising Measurement," Papers 2201.07055, arXiv.org, revised Oct 2022.
- Mantian (Mandy) Hu & Chu (Ivy) Dang & Pradeep K. Chintagunta, 2019. "Search and Learning at a Daily Deals Website," Marketing Science, INFORMS, vol. 38(4), pages 609-642, July.
- Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
- Asnat Greenstein-Messica & Lior Rokach & Asaf Shabtai, 2017. "Personal-discount sensitivity prediction for mobile coupon conversion optimization," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(8), pages 1940-1952, August.
- Mustak, Mekhail & Salminen, Joni & Plé, Loïc & Wirtz, Jochen, 2021. "Artificial intelligence in marketing: Topic modeling, scientometric analysis, and research agenda," Journal of Business Research, Elsevier, vol. 124(C), pages 389-404.
- Robert Donnelly & Francisco J.R. Ruiz & David Blei & Susan Athey, 2021.
"Counterfactual inference for consumer choice across many product categories,"
Quantitative Marketing and Economics (QME), Springer, vol. 19(3), pages 369-407, December.
- Robert Donnelly & Francisco J. R. Ruiz & David Blei & Susan Athey, 2021. "Correction to: Counterfactual inference for consumer choice across many product categories," Quantitative Marketing and Economics (QME), Springer, vol. 19(3), pages 409-409, December.
- Jagmohan S. Raju & Sanjay K. Dhar & Donald G. Morrison, 1994. "The Effect of Package Coupons on Brand Choice," Marketing Science, INFORMS, vol. 13(2), pages 145-164.
- Ren, Xinxin & Cao, Jingjing & Xu, Xianhao & Gong, Yeming (Yale), 2021. "A two-stage model for forecasting consumers’ intention to purchase with e-coupons," Journal of Retailing and Consumer Services, Elsevier, vol. 59(C).
- Scott A. Neslin, 1990. "A Market Response Model for Coupon Promotions," Marketing Science, INFORMS, vol. 9(2), pages 125-145.
- Martin Huber & Andreas Steinmayr, 2021.
"A Framework for Separating Individual-Level Treatment Effects From Spillover Effects,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 422-436, March.
- Huber, Martin & Steinmayr, Andreas, 2019. "A Framework for Separating Individual-Level Treatment Effects From Spillover Effects," Munich Reprints in Economics 78220, University of Munich, Department of Economics.
- Charles F. Manski, 2004.
"Statistical Treatment Rules for Heterogeneous Populations,"
Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers CWP03/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Charles F. Manski, 2003. "Statistical treatment rules for heterogeneous populations," CeMMAP working papers 03/03, Institute for Fiscal Studies.
- Tobias Cagala & Ulrich Glogowsky & Johannes Rincke & Anthony Strittmatter, 2021. "Optimal Targeting in Fundraising: A Causal Machine-Learning Approach," Papers 2103.10251, arXiv.org, revised Sep 2021.
- Aradhna Krishna & Z. John Zhang, 1999. "Short- or Long-Duration Coupons: The Effect of the Expiration Date on the Profitability of Coupon Promotions," Management Science, INFORMS, vol. 45(8), pages 1041-1056, August.
- Imke Reimers & Claire (Chunying) Xie, 2019. "Do Coupons Expand or Cannibalize Revenue? Evidence from an e-Market," Management Science, INFORMS, vol. 65(1), pages 286-300, January.
- Arun Gopalakrishnan & Young-Hoon Park, 2021. "The Impact of Coupons on the Visit-to-Purchase Funnel," Marketing Science, INFORMS, vol. 40(1), pages 48-61, January.
- Eric T. Anderson & Duncan I. Simester, 2004. "Long-Run Effects of Promotion Depth on New Versus Established Customers: Three Field Studies," Marketing Science, INFORMS, vol. 23(1), pages 4-20, February.
- Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
- Michelle Andrews & Xueming Luo & Zheng Fang & Anindya Ghose, 2016. "Mobile Ad Effectiveness: Hyper-Contextual Targeting with Crowdedness," Marketing Science, INFORMS, vol. 35(2), pages 218-233, March.
- Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2021. "Optimal Price Targeting," CESifo Working Paper Series 9439, CESifo.
- Glynn, Adam N. & Quinn, Kevin M., 2010. "An Introduction to the Augmented Inverse Propensity Weighted Estimator," Political Analysis, Cambridge University Press, vol. 18(1), pages 36-56, January.
- Vira Semenova & Victor Chernozhukov, 2021. "Debiased machine learning of conditional average treatment effects and other causal functions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 264-289.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- von Zahn, Moritz & Bauer, Kevin & Mihale-Wilson, Cristina & Jagow, Johanna & Speicher, Max & Hinz, Oliver, 2022. "The smart green nudge: Reducing product returns through enriched digital footprints & causal machine learning," SAFE Working Paper Series 363, Leibniz Institute for Financial Research SAFE, revised 2022.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Achim Ahrens & Alessandra Stampi‐Bombelli & Selina Kurer & Dominik Hangartner, 2024.
"Optimal multi‐action treatment allocation: A two‐phase field experiment to boost immigrant naturalization,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1379-1395, November.
- Achim Ahrens & Alessandra Stampi-Bombelli & Selina Kurer & Dominik Hangartner, 2023. "Optimal multi-action treatment allocation: A two-phase field experiment to boost immigrant naturalization," Papers 2305.00545, arXiv.org, revised Feb 2024.
- Augustine Denteh & Helge Liebert, 2022.
"Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment,"
Papers
2201.07072, arXiv.org, revised Apr 2023.
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," CESifo Working Paper Series 9664, CESifo.
- Denteh, Augustine & Liebert, Helge, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," IZA Discussion Papers 15192, Institute of Labor Economics (IZA).
- Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
- Takanori Ida & Takunori Ishihara & Koichiro Ito & Daido Kido & Toru Kitagawa & Shosei Sakaguchi & Shusaku Sasaki, 2021. "Paternalism, Autonomy, or Both? Experimental Evidence from Energy Saving Programs," Papers 2112.09850, arXiv.org.
- Takanori Ida & Takunori Ishihara & Koichiro Ito & Daido Kido & Toru Kitagawa & Shosei Sakaguchi & Shusaku Sasaki, 2022.
"Choosing Who Chooses: Selection-Driven Targeting in Energy Rebate Programs,"
NBER Working Papers
30469, National Bureau of Economic Research, Inc.
- Takanori IDA & Takunori ISHIHARA & Koichiro ITO & Daido KIDO & Toru KITAGAWA & Shosei SAKAGUCHI & Shusaku SASAKI, 2023. "Choosing Who Chooses: Selection-driven targeting in energy rebate programs," Discussion papers 23011, Research Institute of Economy, Trade and Industry (RIETI).
- Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
- Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
- Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
- Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org, revised Apr 2025.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Cordier, J.; & Salvi, I.; & Steinbeck, V.; & Geissler, A.; & Vogel, J.;, 2023. "Is rapid recovery always the best recovery? - Developing a machine learning approach for optimal assignment rules under capacity constraints for knee replacement patients," Health, Econometrics and Data Group (HEDG) Working Papers 23/08, HEDG, c/o Department of Economics, University of York.
- Manski, Charles F., 2023.
"Probabilistic prediction for binary treatment choice: With focus on personalized medicine,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with Focus on Personalized Medicine," NBER Working Papers 29358, National Bureau of Economic Research, Inc.
- Charles F. Manski, 2021. "Probabilistic Prediction for Binary Treatment Choice: with focus on personalized medicine," Papers 2110.00864, arXiv.org.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023.
"Treatment recommendation with distributional targets,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
- Anders Bredahl Kock & David Preinerstorfer & Bezirgen Veliyev, 2020. "Treatment recommendation with distributional targets," Papers 2005.09717, arXiv.org, revised Apr 2022.
- Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Aug 2024.
- Patrick Rehill & Nicholas Biddle, 2023. "Transparency challenges in policy evaluation with causal machine learning -- improving usability and accountability," Papers 2310.13240, arXiv.org, revised Mar 2024.
- Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
- Timothy B. Armstrong & Shu Shen, 2023. "Inference on optimal treatment assignments," The Japanese Economic Review, Springer, vol. 74(4), pages 471-500, October.
- Liyang Sun, 2021.
"Empirical Welfare Maximization with Constraints,"
Papers
2103.15298, arXiv.org, revised Sep 2024.
- Liyang Sun, 2024. "Empirical welfare maximization with constraints," CeMMAP working papers 19/24, Institute for Fiscal Studies.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0278937. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.