IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.02635.html

Counterfactual Inference for Consumer Choice Across Many Product Categories

Author

Listed:
  • Rob Donnelly
  • Francisco R. Ruiz
  • David Blei
  • Susan Athey

Abstract

This paper proposes a method for estimating consumer preferences among discrete choices, where the consumer chooses at most one product in a category, but selects from multiple categories in parallel. The consumer's utility is additive in the different categories. Her preferences about product attributes as well as her price sensitivity vary across products and are in general correlated across products. We build on techniques from the machine learning literature on probabilistic models of matrix factorization, extending the methods to account for time-varying product attributes and products going out of stock. We evaluate the performance of the model using held-out data from weeks with price changes or out of stock products. We show that our model improves over traditional modeling approaches that consider each category in isolation. One source of the improvement is the ability of the model to accurately estimate heterogeneity in preferences (by pooling information across categories); another source of improvement is its ability to estimate the preferences of consumers who have rarely or never made a purchase in a given category in the training data. Using held-out data, we show that our model can accurately distinguish which consumers are most price sensitive to a given product. We consider counterfactuals such as personally targeted price discounts, showing that using a richer model such as the one we propose substantially increases the benefits of personalization in discounts.

Suggested Citation

  • Rob Donnelly & Francisco R. Ruiz & David Blei & Susan Athey, 2019. "Counterfactual Inference for Consumer Choice Across Many Product Categories," Papers 1906.02635, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:1906.02635
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.02635
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yiyan Huang & Cheuk Hang Leung & Siyi Wang & Yijun Li & Qi Wu, 2024. "Unveiling the Potential of Robustness in Selecting Conditional Average Treatment Effect Estimators," Papers 2402.18392, arXiv.org, revised Oct 2024.
    2. Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2023. "Optimal Price Targeting," Marketing Science, INFORMS, vol. 42(3), pages 476-499, May.
    3. Krueger, Rico & Bierlaire, Michel & Daziano, Ricardo A. & Rashidi, Taha H. & Bansal, Prateek, 2021. "Evaluating the predictive abilities of mixed logit models with unobserved inter- and intra-individual heterogeneity," Journal of choice modelling, Elsevier, vol. 41(C).
    4. Adair Morse & Karen Pence, 2021. "Technological Innovation and Discrimination in Household Finance," Springer Books, in: Raghavendra Rau & Robert Wardrop & Luigi Zingales (ed.), The Palgrave Handbook of Technological Finance, pages 783-808, Springer.
    5. Du, Tianyu & Kanodia, Ayush & Athey, Susan, 2023. "Torch-Choice: A PyTorch Package for Large-Scale Choice Modelling with Python," Research Papers 4106, Stanford University, Graduate School of Business.
    6. Henrika Langen & Martin Huber, 2023. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," PLOS ONE, Public Library of Science, vol. 18(1), pages 1-37, January.
    7. Tatiana de Macedo Nogueira Lima, 2022. "Documento de Trabalho 03/2022 - Aprendizado de máquina e antitruste," Documentos de Trabalho 2022030, Conselho Administrativo de Defesa Econômica (Cade), Departamento de Estudos Econômicos.
    8. Du, Tianyu & Kanodia, Ayush & Brunborg, Herman & Vafa, Keyon & Athey, Susan, 2024. "Labor-LLM: Language-Based Occupational Representations with Large Language Models," Research Papers 4188, Stanford University, Graduate School of Business.
    9. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    10. Adam N. Smith & Jim E. Griffin, 2023. "Shrinkage priors for high-dimensional demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 21(1), pages 95-146, March.
    11. Adam N. Smith & Stephan Seiler & Ishant Aggarwal, 2021. "Optimal Price Targeting," CESifo Working Paper Series 9439, CESifo.

    More about this item

    JEL classification:

    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • L81 - Industrial Organization - - Industry Studies: Services - - - Retail and Wholesale Trade; e-Commerce
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.02635. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.