IDEAS home Printed from https://ideas.repec.org/p/yor/hectdg/23-08.html
   My bibliography  Save this paper

Is rapid recovery always the best recovery? - Developing a machine learning approach for optimal assignment rules under capacity constraints for knee replacement patients

Author

Listed:
  • Cordier, J.;
  • Salvi, I.;
  • Steinbeck, V.;
  • Geissler, A.;
  • Vogel, J.;

Abstract

Recent research suggests that rapid recovery after knee replacement is beneficial for all patients. Rapid recovery requires timely attention after surgery, yet staff resources are usually limited. Thus, patients with the highest possible health gains from rapid recovery should be identified with the objective to prioritise these patients when assigning rapid recovery capacities. We analyze the effect of optimal assignment rules under different capacity constraints for patients set on the rapid recovery care path using disease specific patient-reported outcomes (KOOS-PS) as measure for effectiveness. Subsequently, we build a policy tree to develop optimal treatment assignment rules. We use patient-reported and observational data from nine German hospitals from 2020/21. We apply a causal forest to estimate the double-robust treatment effects, controlling for patient characteristics. We confirm that on average, after controlling for patient characteristics, patients on the rapid recovery care path experience a significantly larger improvement of their joint functionality than patients on the conventional care path. Using the policy tree, we find that health outcome improvement can be increased on average from 17.87 (observed improvement) to 20.02 on the KOOS-PS scale (0 − 100) without increasing capacity using optimal assignment rules selecting patients for rapid recovery with characteristics linked to higher health gains. Increasing the capacity expects an health outcome improvement of 20.13. We conclude that novel machine learning methods are effective in developing rules for selecting patients for rapid recovery based on their characteristics maximising overall health gains given limited resources. Ultimately, such algorithms should be used for clinical decision making systems as well as surgery and post-surgery capacity planning to work towards the pressing challenges of increasing demand and decreasing supply, driven by demographic change, in today’s hospital sector.

Suggested Citation

  • Cordier, J.; & Salvi, I.; & Steinbeck, V.; & Geissler, A.; & Vogel, J.;, 2023. "Is rapid recovery always the best recovery? - Developing a machine learning approach for optimal assignment rules under capacity constraints for knee replacement patients," Health, Econometrics and Data Group (HEDG) Working Papers 23/08, HEDG, c/o Department of Economics, University of York.
  • Handle: RePEc:yor:hectdg:23/08
    as

    Download full text from publisher

    File URL: https://www.york.ac.uk/media/economics/documents/hedg/workingpapers/2023/2308.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toru Kitagawa & Aleksey Tetenov, 2018. "Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
    2. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    3. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    4. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    5. Stoye, Jörg, 2009. "Minimax regret treatment choice with finite samples," Journal of Econometrics, Elsevier, vol. 151(1), pages 70-81, July.
    6. Rachel Cassidy & Charles F. Manski, 2019. "Tuberculosis diagnosis and treatment under uncertainty," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(46), pages 22990-22997, November.
    7. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    8. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    9. Athey, Susan & Palikot, Emil, 2022. "Effective and Scalable Programs to Facilitate Labor Market Transitions for Women in Technology," Research Papers 4063, Stanford University, Graduate School of Business.
    10. Charles F. Manski, 2004. "Statistical Treatment Rules for Heterogeneous Populations," Econometrica, Econometric Society, vol. 72(4), pages 1221-1246, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Augustine Denteh & Helge Liebert, 2022. "Who Increases Emergency Department Use? New Insights from the Oregon Health Insurance Experiment," Working Papers 2201, Tulane University, Department of Economics.
    2. Henrika Langen & Martin Huber, 2022. "How causal machine learning can leverage marketing strategies: Assessing and improving the performance of a coupon campaign," Papers 2204.10820, arXiv.org, revised Jun 2022.
    3. Takanori Ida & Takunori Ishihara & Koichiro Ito & Daido Kido & Toru Kitagawa & Shosei Sakaguchi & Shusaku Sasaki, 2022. "Choosing Who Chooses: Selection-Driven Targeting in Energy Rebate Programs," NBER Working Papers 30469, National Bureau of Economic Research, Inc.
    4. Takanori Ida & Takunori Ishihara & Koichiro Ito & Daido Kido & Toru Kitagawa & Shosei Sakaguchi & Shusaku Sasaki, 2021. "Paternalism, Autonomy, or Both? Experimental Evidence from Energy Saving Programs," Papers 2112.09850, arXiv.org.
    5. Toru Kitagawa & Sokbae Lee & Chen Qiu, 2022. "Treatment Choice with Nonlinear Regret," Papers 2205.08586, arXiv.org, revised Feb 2024.
    6. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Manski, Charles F., 2023. "Probabilistic prediction for binary treatment choice: With focus on personalized medicine," Journal of Econometrics, Elsevier, vol. 234(2), pages 647-663.
    8. Garbero, Alessandra & Sakos, Grayson & Cerulli, Giovanni, 2023. "Towards data-driven project design: Providing optimal treatment rules for development projects," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    9. Kock, Anders Bredahl & Preinerstorfer, David & Veliyev, Bezirgen, 2023. "Treatment recommendation with distributional targets," Journal of Econometrics, Elsevier, vol. 234(2), pages 624-646.
    10. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    11. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    12. Shosei Sakaguchi, 2021. "Estimation of Optimal Dynamic Treatment Assignment Rules under Policy Constraints," Papers 2106.05031, arXiv.org, revised Apr 2024.
    13. Charles F. Manski, 2021. "Econometrics for Decision Making: Building Foundations Sketched by Haavelmo and Wald," Econometrica, Econometric Society, vol. 89(6), pages 2827-2853, November.
    14. Yu-Chang Chen & Haitian Xie, 2022. "Personalized Subsidy Rules," Papers 2202.13545, arXiv.org, revised Mar 2022.
    15. Yuya Sasaki & Takuya Ura, 2020. "Welfare Analysis via Marginal Treatment Effects," Papers 2012.07624, arXiv.org.
    16. Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    17. Kitagawa, Toru & Wang, Guanyi, 2023. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," Journal of Econometrics, Elsevier, vol. 232(1), pages 109-131.
    18. Seungjin Han & Julius Owusu & Youngki Shin, 2022. "Statistical Treatment Rules under Social Interaction," Papers 2209.09077, arXiv.org, revised Nov 2022.
    19. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    20. Toru Kitagawa & Guanyi Wang, 2020. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP59/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yor:hectdg:23/08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jane Rawlings (email available below). General contact details of provider: https://edirc.repec.org/data/deyoruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.