IDEAS home Printed from
   My bibliography  Save this article

On inverse probability-weighted estimators in the presence of interference


  • L. Liu
  • M. G. Hudgens
  • S. Becker-Dreps


We consider inference about the causal effect of a treatment or exposure in the presence of interference, i.e., when one individual’s treatment affects the outcome of another individual. In the observational setting where the treatment assignment mechanism is not known, inverse probability-weighted estimators have been proposed when individuals can be partitioned into groups such that there is no interference between individuals in different groups. Unfortunately this assumption, which is sometimes referred to as partial interference, may not hold, and moreover existing weighted estimators may have large variances. In this paper we consider weighted estimators that could be employed when interference is present. We first propose a generalized inverse probability-weighted estimator and two Hájek-type stabilized weighted estimators that allow any form of interference. We derive their asymptotic distributions and propose consistent variance estimators assuming partial interference. Empirical results show that one of the Hájek estimators can have substantially smaller finite-sample variance than the other estimators. The different estimators are illustrated using data on the effects of rotavirus vaccination in Nicaragua.

Suggested Citation

  • L. Liu & M. G. Hudgens & S. Becker-Dreps, 2016. "On inverse probability-weighted estimators in the presence of interference," Biometrika, Biometrika Trust, vol. 103(4), pages 829-842.
  • Handle: RePEc:oup:biomet:v:103:y:2016:i:4:p:829-842.

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    2. Halloran M. Elizabeth & Hudgens Michael G., 2012. "Causal Inference for Vaccine Effects on Infectiousness," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-40, January.
    3. VanderWeele, Tyler J. & Tchetgen Tchetgen, Eric J., 2011. "Effect partitioning under interference in two-stage randomized vaccine trials," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 861-869, July.
    4. Xi Luo & Dylan S. Small & Chiang-Shan R. Li & Paul R. Rosenbaum, 2012. "Inference With Interference Between Units in an fMRI Experiment of Motor Inhibition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 530-541, June.
    5. Carolina Perez-Heydrich & Michael G. Hudgens & M. Elizabeth Halloran & John D. Clemens & Mohammad Ali & Michael E. Emch, 2014. "Assessing effects of cholera vaccination in the presence of interference," Biometrics, The International Biometric Society, vol. 70(3), pages 731-741, September.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:103:y:2016:i:4:p:829-842.. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Oxford University Press). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.