IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v183y2020i4p1659-1676.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Causal inference, social networks and chain graphs

Author

Listed:
  • Elizabeth L. Ogburn
  • Ilya Shpitser
  • Youjin Lee

Abstract

Traditionally, statistical inference and causal inference on human subjects rely on the assumption that individuals are independently affected by treatments or exposures. However, recently there has been increasing interest in settings, such as social networks, where individuals may interact with one another such that treatments may spill over from the treated individual to their social contacts and outcomes may be contagious. Existing models proposed for causal inference using observational data from networks of interacting individuals have two major shortcomings. First, they often require a level of granularity in the data that is infeasible in practice to collect in most settings and, second, the models are high dimensional and often too big to fit to the available data. We illustrate and justify a parsimonious parameterization for network data with interference and contagion. Our parameterization corresponds to a particular family of graphical models known as chain graphs. We argue that, in some settings, chain graph models approximate the marginal distribution of a snapshot of a longitudinal data‐generating process on interacting units. We illustrate the use of chain graphs for causal inference about collective decision making in social networks by using data from US Supreme Court decisions between 1994 and 2004 and in simulations.

Suggested Citation

  • Elizabeth L. Ogburn & Ilya Shpitser & Youjin Lee, 2020. "Causal inference, social networks and chain graphs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1659-1676, October.
  • Handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1659-1676
    DOI: 10.1111/rssa.12594
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/rssa.12594
    Download Restriction: no

    File URL: https://libkey.io/10.1111/rssa.12594?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eckles Dean & Karrer Brian & Ugander Johan, 2017. "Design and Analysis of Experiments in Networks: Reducing Bias from Interference," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-23, March.
    2. Ying Lu & Xiaohui Wang, 2011. "Understanding complex legislative and judicial behaviour via hierarchical ideal point estimation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 60(1), pages 93-107, January.
    3. Halloran M. Elizabeth & Hudgens Michael G., 2012. "Causal Inference for Vaccine Effects on Infectiousness," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-40, January.
    4. Katarzyna Sznajd-Weron & Józef Sznajd, 2000. "Opinion Evolution In Closed Community," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 1157-1165.
    5. Susan Athey & Dean Eckles & Guido W. Imbens, 2018. "Exact p-Values for Network Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
    6. Steffen L. Lauritzen & Thomas S. Richardson, 2002. "Chain graph models and their causal interpretations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 321-348, August.
    7. Cohen-Cole, Ethan & Fletcher, Jason M., 2008. "Is obesity contagious? Social networks vs. environmental factors in the obesity epidemic," Journal of Health Economics, Elsevier, vol. 27(5), pages 1382-1387, September.
    8. Lan Liu & Michael G. Hudgens, 2014. "Large Sample Randomization Inference of Causal Effects in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 288-301, March.
    9. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    10. Serge Galam, 2008. "Sociophysics: A Review Of Galam Models," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(03), pages 409-440.
    11. Bowers, Jake & Fredrickson, Mark M. & Panagopoulos, Costas, 2013. "Reasoning about Interference Between Units: A General Framework," Political Analysis, Cambridge University Press, vol. 21(1), pages 97-124, January.
    12. Rosenbaum, Paul R., 2007. "Interference Between Units in Randomized Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 191-200, March.
    13. L. Liu & M. G. Hudgens & S. Becker-Dreps, 2016. "On inverse probability-weighted estimators in the presence of interference," Biometrika, Biometrika Trust, vol. 103(4), pages 829-842.
    14. Bryan S. Graham & Guido W. Imbens & Geert Ridder, 2010. "Measuring the Effects of Segregation in the Presence of Social Spillovers: A Nonparametric Approach," NBER Working Papers 16499, National Bureau of Economic Research, Inc.
    15. Galam, Serge, 1997. "Rational group decision making: A random field Ising model at T = 0," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 238(1), pages 66-80.
    16. Tate, C. Neal, 1981. "Personal Attribute Models of the Voting Behavior of U.S. Supreme Court Justices: Liberalism in Civil Liberties and Economics Decisions, 1946–1978," American Political Science Review, Cambridge University Press, vol. 75(2), pages 355-367, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Youjin Lee & Ashley L. Buchanan & Elizabeth L. Ogburn & Samuel R. Friedman & M. Elizabeth Halloran & Natallia V. Katenka & Jing Wu & Georgios K. Nikolopoulos, 2023. "Finding influential subjects in a network using a causal framework," Biometrics, The International Biometric Society, vol. 79(4), pages 3715-3727, December.
    2. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
    2. Shaina J. Alexandria & Michael G. Hudgens & Allison E. Aiello, 2023. "Assessing intervention effects in a randomized trial within a social network," Biometrics, The International Biometric Society, vol. 79(2), pages 1409-1419, June.
    3. Karlsson, Maria & Lundin, Mathias, 2016. "On statistical methods for labor market evaluation under interference between units," Working Paper Series 2016:24, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    4. C. Tort`u & I. Crimaldi & F. Mealli & L. Forastiere, 2020. "Modelling Network Interference with Multi-valued Treatments: the Causal Effect of Immigration Policy on Crime Rates," Papers 2003.10525, arXiv.org, revised Jun 2020.
    5. Fredrik Savje, 2021. "Causal inference with misspecified exposure mappings: separating definitions and assumptions," Papers 2103.06471, arXiv.org, revised Mar 2023.
    6. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    7. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    8. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    9. Ariel Boyarsky & Hongseok Namkoong & Jean Pouget-Abadie, 2023. "Modeling Interference Using Experiment Roll-out," Papers 2305.10728, arXiv.org, revised Aug 2023.
    10. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    11. Kosuke Imai & Zhichao Jiang, 2020. "Identification and sensitivity analysis of contagion effects in randomized placebo‐controlled trials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(4), pages 1637-1657, October.
    12. Anish Agarwal & Sarah H. Cen & Devavrat Shah & Christina Lee Yu, 2022. "Network Synthetic Interventions: A Causal Framework for Panel Data Under Network Interference," Papers 2210.11355, arXiv.org, revised Oct 2023.
    13. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    14. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
    15. Supriya Tiwari & Pallavi Basu, 2024. "Quasi-randomization tests for network interference," Papers 2403.16673, arXiv.org.
    16. Tiwari, Mukesh & Yang, Xiguang & Sen, Surajit, 2021. "Modeling the nonlinear effects of opinion kinematics in elections: A simple Ising model with random field based study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 582(C).
    17. Giulio Grossi & Marco Mariani & Alessandra Mattei & Patrizia Lattarulo & Ozge Oner, 2020. "Direct and spillover effects of a new tramway line on the commercial vitality of peripheral streets. A synthetic-control approach," Papers 2004.05027, arXiv.org, revised Nov 2023.
    18. Chiba, Yasutaka, 2012. "A note on bounds for the causal infectiousness effect in vaccine trials," Statistics & Probability Letters, Elsevier, vol. 82(7), pages 1422-1429.
    19. AskariSichani, Omid & Jalili, Mahdi, 2015. "Influence maximization of informed agents in social networks," Applied Mathematics and Computation, Elsevier, vol. 254(C), pages 229-239.
    20. van der Laan Mark J. & Petersen Maya & Zheng Wenjing, 2013. "Estimating the Effect of a Community-Based Intervention with Two Communities," Journal of Causal Inference, De Gruyter, vol. 1(1), pages 83-106, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:183:y:2020:i:4:p:1659-1676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.