IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v237y2023i1s0304407621003067.html
   My bibliography  Save this article

Identification and estimation of spillover effects in randomized experiments

Author

Listed:
  • Vazquez-Bare, Gonzalo

Abstract

I study identification, estimation and inference for spillover effects in experiments where units’ outcomes may depend on the treatment assignments of other units within a group. I show that the commonly-used reduced-form linear-in-means regression identifies a weighted sum of spillover effects with some negative weights, and that the difference in means between treated and controls identifies a combination of direct and spillover effects entering with different signs. I propose nonparametric estimators for average direct and spillover effects that overcome these issues and are consistent and asymptotically normal under a precise relationship between the number of parameters of interest, the total sample size and the treatment assignment mechanism. These findings are illustrated using data from a conditional cash transfer program and with simulations. The empirical results reveal the potential pitfalls of failing to flexibly account for spillover effects in policy evaluation: the estimated difference in means and the reduced-form linear-in-means coefficients are all close to zero and statistically insignificant, whereas the nonparametric estimators I propose reveal large, nonlinear and significant spillover effects.

Suggested Citation

  • Vazquez-Bare, Gonzalo, 2023. "Identification and estimation of spillover effects in randomized experiments," Journal of Econometrics, Elsevier, vol. 237(1).
  • Handle: RePEc:eee:econom:v:237:y:2023:i:1:s0304407621003067
    DOI: 10.1016/j.jeconom.2021.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407621003067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2021.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruno Crépon & Esther Duflo & Marc Gurgand & Roland Rathelot & Philippe Zamora, 2013. "Do Labor Market Policies have Displacement Effects? Evidence from a Clustered Randomized Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(2), pages 531-580.
    2. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    3. Hirano, Keisuke & Hahn, Jinyong, 2010. "Design of randomized experiments to measure social interaction effects," Economics Letters, Elsevier, vol. 106(1), pages 51-53, January.
    4. Lawrence E. Blume & William A. Brock & Steven N. Durlauf & Rajshri Jayaraman, 2015. "Linear Social Interactions Models," Journal of Political Economy, University of Chicago Press, vol. 123(2), pages 444-496.
    5. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    6. Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2009. "Identification of peer effects through social networks," Journal of Econometrics, Elsevier, vol. 150(1), pages 41-55, May.
    7. Sobel, Michael E., 2006. "What Do Randomized Studies of Housing Mobility Demonstrate?: Causal Inference in the Face of Interference," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1398-1407, December.
    8. Matias D. Cattaneo & Michael Jansson & Whitney K. Newey, 2018. "Inference in Linear Regression Models with Many Covariates and Heteroscedasticity," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1350-1361, July.
    9. Laurent Davezies & Xavier D'Haultfoeuille & Denis Fougère, 2009. "Identification of peer effects using group size variation," Econometrics Journal, Royal Economic Society, vol. 12(3), pages 397-413, November.
    10. Paul Goldsmith-Pinkham & Guido W. Imbens, 2013. "Social Networks and the Identification of Peer Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 253-264, July.
    11. Cattaneo, Matias D., 2010. "Efficient semiparametric estimation of multi-valued treatment effects under ignorability," Journal of Econometrics, Elsevier, vol. 155(2), pages 138-154, April.
    12. Susan Athey & Dean Eckles & Guido W. Imbens, 2018. "Exact p-Values for Network Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
    13. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    14. Giacomo De Giorgi & Michele Pellizzari & Silvia Redaelli, 2010. "Identification of Social Interactions through Partially Overlapping Peer Groups," American Economic Journal: Applied Economics, American Economic Association, vol. 2(2), pages 241-275, April.
    15. Esther Duflo & Emmanuel Saez, 2003. "The Role of Information and Social Interactions in Retirement Plan Decisions: Evidence from a Randomized Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(3), pages 815-842.
    16. Felipe Barrera-Osorio & Marianne Bertrand & Leigh L. Linden & Francisco Perez-Calle, 2011. "Improving the Design of Conditional Transfer Programs: Evidence from a Randomized Education Experiment in Colombia," American Economic Journal: Applied Economics, American Economic Association, vol. 3(2), pages 167-195, April.
    17. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    18. Lee, Lung-fei, 2007. "Identification and estimation of econometric models with group interactions, contextual factors and fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 333-374, October.
    19. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    20. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    21. Wallice Ao & Sebastian Calonico & Ying-Ying Lee, 2021. "Multivalued Treatments and Decomposition Analysis: An Application to the WIA Program," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 358-371, January.
    22. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, October.
    23. Sarah Baird & J. Aislinn Bohren & Craig McIntosh & Berk Özler, 2018. "Optimal Design of Experiments in the Presence of Interference," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 844-860, December.
    24. Xinwei Ma & Jingshen Wang, 2020. "Robust Inference Using Inverse Probability Weighting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1851-1860, December.
    25. Natalia Lazzati, 2015. "Treatment response with social interactions: Partial identification via monotone comparative statics," Quantitative Economics, Econometric Society, vol. 6(1), pages 49-83, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dario Tortarolo & Guillermo Cruces & Gonzalo Vazquez-Bare, 2023. "Design of partial population experiments with an application to spillovers in tax compliance," IFS Working Papers W23/17, Institute for Fiscal Studies.
    2. Rodríguez-Puello, Gabriel & Rickardsson, Jonna, 2024. "Spatial Diffusion of Economic Shocks in the Labor Market: Evidence from a Mining Boom and Bust," OSF Preprints tzmf2, Center for Open Science.
    3. Hernández-Agramonte, Juan Manuel & Namen, Olga & Näslund-Hadley, Emma & Biehl, Maria Loreto, 2024. "Supporting early childhood development remotely: Experimental evidence from SMS messages," Journal of Development Economics, Elsevier, vol. 166(C).
    4. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gonzalo Vazquez-Bare, 2017. "Identification and Estimation of Spillover Effects in Randomized Experiments," Papers 1711.02745, arXiv.org, revised Jan 2022.
    2. Yann Bramoullé & Habiba Djebbari & Bernard Fortin, 2020. "Peer Effects in Networks: A Survey," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 603-629, August.
    3. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
    4. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    5. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    6. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    7. Braun, Martin & Verdier, Valentin, 2023. "Estimation of spillover effects with matched data or longitudinal network data," Journal of Econometrics, Elsevier, vol. 233(2), pages 689-714.
    8. Boucher, Vincent & Fortin, Bernard, 2015. "Some Challenges in the Empirics of the Effects of Networks," IZA Discussion Papers 8896, Institute of Labor Economics (IZA).
    9. Jochmans, Koen, 2023. "Peer effects and endogenous social interactions," Journal of Econometrics, Elsevier, vol. 235(2), pages 1203-1214.
    10. Gonzalo Vazquez-Bare, 2020. "Causal Spillover Effects Using Instrumental Variables," Papers 2003.06023, arXiv.org, revised Dec 2021.
    11. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    12. Marisa Miraldo & Carol Propper & Christiern Rose, 2020. "Identification of Peer Effects using Panel Data," Discussion Papers Series 639, School of Economics, University of Queensland, Australia.
    13. Sadat Reza & Puneet Manchanda & Juin-Kuan Chong, 2021. "Identification and Estimation of Endogenous Peer Effects Using Partial Network Data from Multiple Reference Groups," Management Science, INFORMS, vol. 67(8), pages 5070-5105, August.
    14. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    15. Arun Advani & Bansi Malde, 2018. "Methods to identify linear network models: a review," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 154(1), pages 1-16, December.
    16. Sarah Baird & Aislinn Bohren & Craig McIntosh & Berk Ozler, 2017. "Optimal Design of Experiments in the Presence of Interference*, Second Version," PIER Working Paper Archive 16-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 30 Nov 2017.
    17. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2020. "Treatment Effects With Heterogeneous Externalities," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 826-838, October.
    18. Gibbons, Steve & Overman, Henry G. & Patacchini, Eleonora, 2015. "Spatial Methods," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 115-168, Elsevier.
    19. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    20. Dario Tortarolo & Guillermo Cruces & Gonzalo Vazquez-Bare, 2023. "Design of partial population experiments with an application to spillovers in tax compliance," IFS Working Papers W23/17, Institute for Fiscal Studies.

    More about this item

    Keywords

    Spillover effects; Treatment effects; Causal inference; Interference;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C90 - Mathematical and Quantitative Methods - - Design of Experiments - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:237:y:2023:i:1:s0304407621003067. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.