IDEAS home Printed from https://ideas.repec.org/p/pen/papers/16-025.html
   My bibliography  Save this paper

Optimal Design of Experiments in the Presence of Interference*, Second Version

Author

Listed:
  • Sarah Baird

    () (Department of Global Health, George Washington University)

  • Aislinn Bohren

    () (Department of Economics, University of Pennsylvania)

  • Craig McIntosh

    () (Department of Economics, UC San Diego)

  • Berk Ozler

    () (The World Bank)

Abstract

This paper formalizes the optimal design of randomized controlled trials (RCTs) in the presence of interference between units, where an individual's outcome depends on the behavior and outcomes of others in her group. We focus on randomized saturation (RS) designs, which are two-stage RCTs that first randomize the treatment saturation of a group, then randomize individual treatment assignment. Our main contributions are to map the potential outcomes framework with partial interference to a regression model with clustered errors, calculate the statistical power of different RS designs, and derive analytical insights for how to optimally design an RS experiment. We show that the power to detect average treatment effects declines precisely with the ability to identify novel treatment and spillover estimands, such as how effects vary with the intensity of treatment. We provide software that assists researchers in designing RS experiments.

Suggested Citation

  • Sarah Baird & Aislinn Bohren & Craig McIntosh & Berk Ozler, 2017. "Optimal Design of Experiments in the Presence of Interference*, Second Version," PIER Working Paper Archive 16-025, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 30 Nov 2017.
  • Handle: RePEc:pen:papers:16-025
    as

    Download full text from publisher

    File URL: https://economics.sas.upenn.edu/sites/default/files/filevault/SSRN%2016_025%20version%202.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jinyong Hahn & Keisuke Hirano & Dean Karlan, 2011. "Adaptive Experimental Design Using the Propensity Score," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 96-108, January.
    2. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    3. Hirano, Keisuke & Hahn, Jinyong, 2010. "Design of randomized experiments to measure social interaction effects," Economics Letters, Elsevier, vol. 106(1), pages 51-53, January.
    4. Timothy G. Conley & Christopher R. Udry, 2010. "Learning about a New Technology: Pineapple in Ghana," American Economic Review, American Economic Association, vol. 100(1), pages 35-69, March.
    5. Betsy Sinclair & Margaret McConnell & Donald P. Green, 2012. "Detecting Spillover Effects: Design and Analysis of Multilevel Experiments," American Journal of Political Science, John Wiley & Sons, vol. 56(4), pages 1055-1069, October.
    6. Jennifer Alix-Garcia & Craig McIntosh & Katharine R. E. Sims & Jarrod R. Welch, 2013. "The Ecological Footprint of Poverty Alleviation: Evidence from Mexico's Oportunidades Program," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 417-435, May.
    7. Banerjee, Abhijit & Chandrasekhar, Arun G & Duflo, Esther & Jackson, Matthew O., 2012. "The Diffusion of Microfinance," CEPR Discussion Papers 8770, C.E.P.R. Discussion Papers.
    8. Emily Oster & Rebecca Thornton, 2012. "Determinants Of Technology Adoption: Peer Effects In Menstrual Cup Take-Up," Journal of the European Economic Association, European Economic Association, vol. 10(6), pages 1263-1293, December.
    9. Gustavo J. Bobonis & Frederico Finan, 2009. "Neighborhood Peer Effects in Secondary School Enrollment Decisions," The Review of Economics and Statistics, MIT Press, vol. 91(4), pages 695-716, November.
    10. Manuela Angelucci & Giacomo De Giorgi, 2009. "Indirect Effects of an Aid Program: How Do Cash Transfers Affect Ineligibles' Consumption?," American Economic Review, American Economic Association, vol. 99(1), pages 486-508, March.
    11. Duflo, Esther & Saez, Emmanuel, 2002. "Participation and investment decisions in a retirement plan: the influence of colleagues' choices," Journal of Public Economics, Elsevier, vol. 85(1), pages 121-148, July.
    12. Peter M. Aronow, 2012. "A General Method for Detecting Interference Between Units in Randomized Experiments," Sociological Methods & Research, , vol. 41(1), pages 3-16, February.
    13. Lan Liu & Michael G. Hudgens, 2014. "Large Sample Randomization Inference of Causal Effects in the Presence of Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 288-301, March.
    14. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    15. Felipe Barrera-Osorio & Marianne Bertrand & Leigh L. Linden & Francisco Perez-Calle, 2011. "Improving the Design of Conditional Transfer Programs: Evidence from a Randomized Education Experiment in Colombia," American Economic Journal: Applied Economics, American Economic Association, vol. 3(2), pages 167-195, April.
    16. Sarah Baird & Craig McIntosh & Berk Özler, 2011. "Cash or Condition? Evidence from a Cash Transfer Experiment," The Quarterly Journal of Economics, Oxford University Press, vol. 126(4), pages 1709-1753.
    17. Lori A. Beaman, 2012. "Social Networks and the Dynamics of Labour Market Outcomes: Evidence from Refugees Resettled in the U.S," Review of Economic Studies, Oxford University Press, vol. 79(1), pages 128-161.
    18. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," Review of Economic Studies, Oxford University Press, vol. 60(3), pages 531-542.
    19. Kaivan Munshi, 2003. "Networks in the Modern Economy: Mexican Migrants in the U. S. Labor Market," The Quarterly Journal of Economics, Oxford University Press, vol. 118(2), pages 549-599.
    20. Edward Miguel & Michael Kremer, 2004. "Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities," Econometrica, Econometric Society, vol. 72(1), pages 159-217, January.
    21. Matteo Bobba & Jérémie Gignoux, 2019. "Neighborhood Effects in Integrated Social Policies," World Bank Economic Review, World Bank Group, vol. 33(1), pages 116-139.
    22. Macours, Karen & Vakis, Renos, 2009. "Changing households'investments and aspirations through social interactions : evidence from a randomized transfer program," Policy Research Working Paper Series 5137, The World Bank.
    23. Philip S. Babcock & John L. Hartman, 2010. "Networks and Workouts: Treatment Size and Status Specific Peer Effects in a Randomized Field Experiment," NBER Working Papers 16581, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arduini, Tiziano & Patacchini, Eleonora & Rainone, Edoardo, 2019. "Treatment Effects with Heterogeneous Externalities," CEPR Discussion Papers 13781, C.E.P.R. Discussion Papers.
    2. Senne Vandevelde & Bjorn Van Campenhout & Wilberforce Walukano, 2018. "Spoiler alert! Spillovers in the context of a video intervention to maintain seed quality among Ugandan potato farmers," LICOS Discussion Papers 40718, LICOS - Centre for Institutions and Economic Performance, KU Leuven.
    3. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Jun 2020.

    More about this item

    Keywords

    Experimental Design; Causal Inference;

    JEL classification:

    • C93 - Mathematical and Quantitative Methods - - Design of Experiments - - - Field Experiments
    • O22 - Economic Development, Innovation, Technological Change, and Growth - - Development Planning and Policy - - - Project Analysis
    • I25 - Health, Education, and Welfare - - Education - - - Education and Economic Development

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pen:papers:16-025. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Administrator). General contact details of provider: http://edirc.repec.org/data/deupaus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.