IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2011.00373.html
   My bibliography  Save this paper

Causal Inference for Spatial Treatments

Author

Listed:
  • Michael Pollmann

Abstract

Many events and policies (treatments) occur at specific spatial locations, with researchers interested in their effects on nearby units of interest. I approach the spatial treatment setting from an experimental perspective: What ideal experiment would we design to estimate the causal effects of spatial treatments? This perspective motivates a comparison between individuals near realized treatment locations and individuals near counterfactual (unrealized) candidate locations, which differs from current empirical practice. I derive design-based standard errors that are straightforward to compute irrespective of spatial correlations in outcomes. Furthermore, I propose machine learning methods to find counterfactual candidate locations using observational data under unconfounded assignment of the treatment to locations. I apply the proposed methods to study the causal effects of grocery stores on foot traffic to nearby businesses during COVID-19 shelter-in-place policies, finding a substantial positive effect at a very short distance, with no effect at larger distances.

Suggested Citation

  • Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
  • Handle: RePEc:arx:papers:2011.00373
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2011.00373
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Maya Rossin-Slater & Molly Schnell & Hannes Schwandt & Sam Trejo & Lindsey Uniat, 2020. "Local exposure to school shootings and youth antidepressant use," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(38), pages 23484-23489, September.
    2. Matthew Gentzkow & Bryan Kelly & Matt Taddy, 2019. "Text as Data," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 535-574, September.
    3. Rebecca Diamond & Tim McQuade, 2019. "Who Wants Affordable Housing in Their Backyard? An Equilibrium Analysis of Low-Income Property Development," Journal of Political Economy, University of Chicago Press, vol. 127(3), pages 1063-1117.
    4. Raj Chetty & Nathaniel Hendren, 2018. "The Impacts of Neighborhoods on Intergenerational Mobility II: County-Level Estimates," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(3), pages 1163-1228.
    5. Aliprantis, Dionissi & Hartley, Daniel, 2015. "Blowing it up and knocking it down: The local and city-wide effects of demolishing high concentration public housing on crime," Journal of Urban Economics, Elsevier, vol. 88(C), pages 67-81.
    6. Simon Freyaldenhoven & Christian Hansen & Jesse M. Shapiro, 2019. "Pre-event Trends in the Panel Event-Study Design," American Economic Review, American Economic Association, vol. 109(9), pages 3307-3338, September.
    7. Tetsuya Kaji & Elena Manresa & Guillaume Pouliot, 2020. "An adversarial approach to structural estimation," CeMMAP working papers CWP39/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    9. Aaron Chalfin & Benjamin Hansen & Jason Lerner & Lucie Parker, 2019. "Reducing Crime Through Environmental Design: Evidence from a Randomized Experiment of Street Lighting in New York City," NBER Working Papers 25798, National Bureau of Economic Research, Inc.
    10. Susan Athey & Dean Eckles & Guido W. Imbens, 2018. "Exact p-Values for Network Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
    11. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    12. Esther Duflo, 2001. "Schooling and Labor Market Consequences of School Construction in Indonesia: Evidence from an Unusual Policy Experiment," American Economic Review, American Economic Association, vol. 91(4), pages 795-813, September.
    13. Edward L. Glaeser & Scott Duke Kominers & Michael Luca & Nikhil Naik, 2018. "Big Data And Big Cities: The Promises And Limitations Of Improved Measures Of Urban Life," Economic Inquiry, Western Economic Association International, vol. 56(1), pages 114-137, January.
    14. David H. Autor & David Dorn & Gordon H. Hanson, 2013. "The China Syndrome: Local Labor Market Effects of Import Competition in the United States," American Economic Review, American Economic Association, vol. 103(6), pages 2121-2168, October.
    15. James Feyrer & Erin T. Mansur & Bruce Sacerdote, 2017. "Geographic Dispersion of Economic Shocks: Evidence from the Fracking Revolution," American Economic Review, American Economic Association, vol. 107(4), pages 1313-1334, April.
    16. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    17. Case, Anne C, 1991. "Spatial Patterns in Household Demand," Econometrica, Econometric Society, vol. 59(4), pages 953-965, July.
    18. Luc Anselin & Sergio J. Rey, 2010. "Perspectives on Spatial Data Analysis," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 1-20, Springer.
    19. Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Difference-in-differences techniques for spatial data: Local autocorrelation and spatial interaction," Economics Letters, Elsevier, vol. 137(C), pages 123-126.
    20. Michael Greenstone & Enrico Moretti, 2003. "Bidding for Industrial Plants: Does Winning a 'Million Dollar Plant' Increase Welfare?," NBER Working Papers 9844, National Bureau of Economic Research, Inc.
    21. Gupta, Arpit & Van Nieuwerburgh, Stijn & Kontokosta, Constantine, 2022. "Take the Q train: Value capture of public infrastructure projects," Journal of Urban Economics, Elsevier, vol. 129(C).
    22. Michael Greenstone & Richard Hornbeck & Enrico Moretti, 2010. "Identifying Agglomeration Spillovers: Evidence from Winners and Losers of Large Plant Openings," Journal of Political Economy, University of Chicago Press, vol. 118(3), pages 536-598, June.
    23. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    24. David A Keiser & Joseph S Shapiro, 2019. "Consequences of the Clean Water Act and the Demand for Water Quality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(1), pages 349-396.
    25. Melissa Dell & Benjamin A Olken, 2020. "The Development Effects of the Extractive Colonial Economy: The Dutch Cultivation System in Java," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 87(1), pages 164-203.
    26. Patrick Bayer & Stephen L. Ross & Giorgio Topa, 2008. "Place of Work and Place of Residence: Informal Hiring Networks and Labor Market Outcomes," Journal of Political Economy, University of Chicago Press, vol. 116(6), pages 1150-1196, December.
    27. Raj Chetty & Nathaniel Hendren, 2018. "The Impacts of Neighborhoods on Intergenerational Mobility I: Childhood Exposure Effects," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 133(3), pages 1107-1162.
    28. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    29. Maxwell Kellogg & Magne Mogstad & Guillaume Pouliot & Alexander Torgovitsky, 2020. "Combining Matching and Synthetic Control to Trade off Biases from Extrapolation and Interpolation," NBER Working Papers 26624, National Bureau of Economic Research, Inc.
    30. Hannah Druckenmiller & Solomon Hsiang, 2018. "Accounting for Unobservable Heterogeneity in Cross Section Using Spatial First Differences," NBER Working Papers 25177, National Bureau of Economic Research, Inc.
    31. Alexander G. James & Brock Smith, 2020. "Geographic Dispersion of Economic Shocks: Evidence from the Fracking Revolution: Comment," American Economic Review, American Economic Association, vol. 110(6), pages 1905-1913, June.
    32. Donald W. K. Andrews, 2005. "Cross-Section Regression with Common Shocks," Econometrica, Econometric Society, vol. 73(5), pages 1551-1585, September.
    33. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    34. Craig McIntosh, 2008. "Estimating Treatment Effects from Spatial Policy Experiments: An Application to Ugandan Microfinance," The Review of Economics and Statistics, MIT Press, vol. 90(1), pages 15-28, February.
    35. Matias Busso & John DiNardo & Justin McCrary, 2014. "New Evidence on the Finite Sample Properties of Propensity Score Reweighting and Matching Estimators," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 885-897, December.
    36. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    37. Athey, Susan & Imbens, Guido W. & Metzger, Jonas & Munro, Evan, 2024. "Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations," Journal of Econometrics, Elsevier, vol. 240(2).
    38. Paul Goldsmith-Pinkham & Isaac Sorkin & Henry Swift, 2020. "Bartik Instruments: What, When, Why, and How," American Economic Review, American Economic Association, vol. 110(8), pages 2586-2624, August.
    39. Alberto Abadie & Guido W. Imbens, 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 1-11, January.
    40. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    41. Tetsuya Kaji & Elena Manresa & Guillaume Pouliot, 2020. "An Adversarial Approach to Structural Estimation," Papers 2007.06169, arXiv.org, revised Oct 2022.
    42. Edward Miguel & Michael Kremer, 2004. "Worms: Identifying Impacts on Education and Health in the Presence of Treatment Externalities," Econometrica, Econometric Society, vol. 72(1), pages 159-217, January.
    43. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    44. Jessica Cohen & Pascaline Dupas, 2010. "Free Distribution or Cost-Sharing? Evidence from a Randomized Malaria Prevention Experiment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(1), pages 1-45.
    45. Thomas Barrios & Rebecca Diamond & Guido W. Imbens & Michal Kolesár, 2012. "Clustering, Spatial Correlations, and Randomization Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 578-591, June.
    46. Amy Finkelstein & Matthew Gentzkow & Heidi Williams, 2021. "Place-Based Drivers of Mortality: Evidence from Migration," American Economic Review, American Economic Association, vol. 111(8), pages 2697-2735, August.
    47. James Feyrer & Erin Mansur & Bruce Sacerdote, 2020. "Geographic Dispersion of Economic Shocks: Evidence from the Fracking Revolution: Reply," American Economic Review, American Economic Association, vol. 110(6), pages 1914-1920, June.
    48. Ryan Engstrom & Jonathan Hersh & David Newhouse, 2022. "Poverty from Space: Using High Resolution Satellite Imagery for Estimating Economic Well-being," The World Bank Economic Review, World Bank, vol. 36(2), pages 382-412.
    49. Susan Athey & David Blei & Robert Donnelly & Francisco Ruiz & Tobias Schmidt, 2018. "Estimating Heterogeneous Consumer Preferences for Restaurants and Travel Time Using Mobile Location Data," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 64-67, May.
    50. Sandler, Danielle H., 2017. "Externalities of public housing: The effect of public housing demolitions on local crime," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 24-35.
    51. Moulton, Brent R & Randolph, William C, 1989. "Alternative Tests of the Error Components Model," Econometrica, Econometric Society, vol. 57(3), pages 685-693, May.
    52. Leigh Linden & Jonah E. Rockoff, 2008. "Estimates of the Impact of Crime Risk on Property Values from Megan's Laws," American Economic Review, American Economic Association, vol. 98(3), pages 1103-1127, June.
    53. Lung-Fei Lee, 2004. "Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models," Econometrica, Econometric Society, vol. 72(6), pages 1899-1925, November.
    54. Amy Finkelstein & Matthew Gentzkow & Heidi Williams, 2016. "Sources of Geographic Variation in Health Care: Evidence From PatientMigration," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1681-1726.
    55. Panle Jia, 2008. "What Happens When Wal-Mart Comes to Town: An Empirical Analysis of the Discount Retailing Industry," Econometrica, Econometric Society, vol. 76(6), pages 1263-1316, November.
    56. Rosenbaum, Paul R., 2007. "Interference Between Units in Randomized Experiments," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 191-200, March.
    57. Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B., 2011. "Inference with dependent data using cluster covariance estimators," Journal of Econometrics, Elsevier, vol. 165(2), pages 137-151.
    58. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    59. Tetsuya Kaji & Elena Manresa & Guillaume Pouliot, 2020. "An Adversarial Approach to Structural Estimation," Working Papers 2020-144, Becker Friedman Institute for Research In Economics.
    60. Athey, Susan & Imbens, Guido W., 2019. "Machine Learning Methods Economists Should Know About," Research Papers 3776, Stanford University, Graduate School of Business.
    61. Timothy J. Bartik, 1991. "Who Benefits from State and Local Economic Development Policies?," Books from Upjohn Press, W.E. Upjohn Institute for Employment Research, number wbsle, November.
    62. Hoff P.D. & Raftery A.E. & Handcock M.S., 2002. "Latent Space Approaches to Social Network Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1090-1098, December.
    63. Marc F. Bellemare & Casey J. Wichman, 2020. "Elasticities and the Inverse Hyperbolic Sine Transformation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(1), pages 50-61, February.
    64. Stephen G. Donald & Kevin Lang, 2007. "Inference with Difference-in-Differences and Other Panel Data," The Review of Economics and Statistics, MIT Press, vol. 89(2), pages 221-233, May.
    65. Borusyak, Kirill & Hull, Peter, 2020. "Non-Random Exposure to Exogenous Shocks: Theory and Applications," CEPR Discussion Papers 15319, C.E.P.R. Discussion Papers.
    66. Hansen, Christian B., 2007. "Generalized least squares inference in panel and multilevel models with serial correlation and fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 670-694, October.
    67. Charles F. Manski & John V. Pepper, 2018. "How Do Right-to-Carry Laws Affect Crime Rates? Coping with Ambiguity Using Bounded-Variation Assumptions," The Review of Economics and Statistics, MIT Press, vol. 100(2), pages 232-244, May.
    68. Rodrigo Adão & Michal Kolesár & Eduardo Morales, 2019. "Shift-Share Designs: Theory and Inference," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(4), pages 1949-2010.
    69. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    70. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    71. Kelly, Morgan, 2019. "The Standard Errors of Persistence," CEPR Discussion Papers 13783, C.E.P.R. Discussion Papers.
    72. G W Basse & A Feller & P Toulis, 2019. "Randomization tests of causal effects under interference," Biometrika, Biometrika Trust, vol. 106(2), pages 487-494.
    73. Rodrigo Ad~ao & Michal Koles'ar & Eduardo Morales, 2018. "Shift-Share Designs: Theory and Inference," Papers 1806.07928, arXiv.org, revised Aug 2019.
    74. William Greene, 2009. "Discrete Choice Modeling," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 11, pages 473-556, Palgrave Macmillan.
    75. Raj Chetty & Nathaniel Hendren & Patrick Kline & Emmanuel Saez, 2014. "Where is the land of Opportunity? The Geography of Intergenerational Mobility in the United States," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1553-1623.
    76. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    77. Janet Currie & Lucas Davis & Michael Greenstone & Reed Walker, 2015. "Environmental Health Risks and Housing Values: Evidence from 1,600 Toxic Plant Openings and Closings," American Economic Review, American Economic Association, vol. 105(2), pages 678-709, February.
    78. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    79. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    80. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    81. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    82. Iván Díaz Muñoz & Mark van der Laan, 2012. "Population Intervention Causal Effects Based on Stochastic Interventions," Biometrics, The International Biometric Society, vol. 68(2), pages 541-549, June.
    83. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    84. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    85. Morgan Kelly, 2019. "The Standard Errors of Persistence," Working Papers 201913, School of Economics, University College Dublin.
    86. Lahiri, S.N. & Robinson, Peter M., 2016. "Central limit theorems for long range dependent spatial linear processes," LSE Research Online Documents on Economics 65331, London School of Economics and Political Science, LSE Library.
    87. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
    88. Moulton, Brent R, 1990. "An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Unit," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 334-338, May.
    89. Susan Athey, 2018. "The Impact of Machine Learning on Economics," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 507-547, National Bureau of Economic Research, Inc.
    90. Hannah Druckenmiller & Solomon Hsiang, 2018. "Accounting for Unobservable Heterogeneity in Cross Section Using Spatial First Differences," Papers 1810.07216, arXiv.org, revised Aug 2019.
    91. Dave Donaldson & Adam Storeygard, 2016. "The View from Above: Applications of Satellite Data in Economics," Journal of Economic Perspectives, American Economic Association, vol. 30(4), pages 171-198, Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael P. Leung, 2021. "Rate-Optimal Cluster-Randomized Designs for Spatial Interference," Papers 2111.04219, arXiv.org, revised Sep 2022.
    2. Cao, Jing & Ma, Rong, 2023. "Mitigating agricultural fires with carrot or stick? Evidence from China," Journal of Development Economics, Elsevier, vol. 165(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    3. Committee, Nobel Prize, 2021. "Answering causal questions using observational data," Nobel Prize in Economics documents 2021-2, Nobel Prize Committee.
    4. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    5. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    6. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    7. Athey, Susan & Imbens, Guido W. & Metzger, Jonas & Munro, Evan, 2024. "Using Wasserstein Generative Adversarial Networks for the design of Monte Carlo simulations," Journal of Econometrics, Elsevier, vol. 240(2).
    8. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    11. Michael C. Knaus, 2021. "A double machine learning approach to estimate the effects of musical practice on student’s skills," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 282-300, January.
    12. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    13. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    14. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    15. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    16. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
    17. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    18. Baum-Snow, Nathaniel & Ferreira, Fernando, 2015. "Causal Inference in Urban and Regional Economics," Handbook of Regional and Urban Economics, in: Gilles Duranton & J. V. Henderson & William C. Strange (ed.), Handbook of Regional and Urban Economics, edition 1, volume 5, chapter 0, pages 3-68, Elsevier.
    19. Albouy, David & Christensen, Peter & Sarmiento-Barbieri, Ignacio, 2020. "Unlocking amenities: Estimating public good complementarity," Journal of Public Economics, Elsevier, vol. 182(C).
    20. Kuanhao Jiang & Rajarshi Mukherjee & Subhabrata Sen & Pragya Sur, 2022. "A New Central Limit Theorem for the Augmented IPW Estimator: Variance Inflation, Cross-Fit Covariance and Beyond," Papers 2205.10198, arXiv.org, revised Oct 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.00373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.