IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2504.13295.html
   My bibliography  Save this paper

Using Multiple Outcomes to Adjust Standard Errors for Spatial Correlation

Author

Listed:
  • Stefano DellaVigna
  • Guido Imbens
  • Woojin Kim
  • David M. Ritzwoller

Abstract

Empirical research in economics often examines the behavior of agents located in a geographic space. In such cases, statistical inference is complicated by the interdependence of economic outcomes across locations. A common approach to account for this dependence is to cluster standard errors based on a predefined geographic partition. A second strategy is to model dependence in terms of the distance between units. Dependence, however, does not necessarily stop at borders and is typically not determined by distance alone. This paper introduces a method that leverages observations of multiple outcomes to adjust standard errors for cross-sectional dependence. Specifically, a researcher, while interested in a particular outcome variable, often observes dozens of other variables for the same units. We show that these outcomes can be used to estimate dependence under the assumption that the cross-sectional correlation structure is shared across outcomes. We develop a procedure, which we call Thresholding Multiple Outcomes (TMO), that uses this estimate to adjust standard errors in a given regression setting. We show that adjustments of this form can lead to sizable reductions in the bias of standard errors in calibrated U.S. county-level regressions. Re-analyzing nine recent papers, we find that the proposed correction can make a substantial difference in practice.

Suggested Citation

  • Stefano DellaVigna & Guido Imbens & Woojin Kim & David M. Ritzwoller, 2025. "Using Multiple Outcomes to Adjust Standard Errors for Spatial Correlation," Papers 2504.13295, arXiv.org.
  • Handle: RePEc:arx:papers:2504.13295
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2504.13295
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Andreas Madestam & Daniel Shoag & Stan Veuger & David Yanagizawa-Drott, 2013. "Do Political Protests Matter? Evidence from the Tea Party Movement," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 128(4), pages 1633-1685.
    2. Besley, Timothy & Case, Anne, 1995. "Incumbent Behavior: Vote-Seeking, Tax-Setting, and Yardstick Competition," American Economic Review, American Economic Association, vol. 85(1), pages 25-45, March.
    3. Samuel Bazzi & Andreas Ferrara & Martin Fiszbein & Thomas Pearson & Patrick A Testa, 2023. "The Other Great Migration: Southern Whites and the New Right," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(3), pages 1577-1647.
    4. Guido W. Imbens & Michal Kolesár, 2016. "Robust Standard Errors in Small Samples: Some Practical Advice," The Review of Economics and Statistics, MIT Press, vol. 98(4), pages 701-712, October.
    5. Manuel Funke & Moritz Schularick & Christoph Trebesch, 2023. "Populist Leaders and the Economy," American Economic Review, American Economic Association, vol. 113(12), pages 3249-3288, December.
    6. Isaiah Andrews & James H. Stock & Liyang Sun, 2019. "Weak Instruments in Instrumental Variables Regression: Theory and Practice," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 727-753, August.
    7. Guggenberger, Patrik & Kleibergen, Frank & Mavroeidis, Sophocles, 2023. "A test for Kronecker Product Structure covariance matrix," Journal of Econometrics, Elsevier, vol. 233(1), pages 88-112.
    8. Alvaro Calderon & Vasiliki Fouka & Marco Tabellini, 2023. "Racial Diversity and Racial Policy Preferences: The Great Migration and Civil Rights," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(1), pages 165-200.
    9. Xavier Giroud & Simone Lenzu & Quinn Maingi & Holger Mueller, 2024. "Propagation and Amplification of Local Productivity Spillovers," Econometrica, Econometric Society, vol. 92(5), pages 1589-1619, September.
    10. Rustam Ibragimov & Ulrich K. Müller, 2016. "Inference with Few Heterogeneous Clusters," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 83-96, March.
    11. Jacob Moscona & Karthik A Sastry, 2023. "Does Directed Innovation Mitigate Climate Damage? Evidence from U.S. Agriculture," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(2), pages 637-701.
    12. Michael Greenstone & Richard Hornbeck & Enrico Moretti, 2010. "Identifying Agglomeration Spillovers: Evidence from Winners and Losers of Large Plant Openings," Journal of Political Economy, University of Chicago Press, vol. 118(3), pages 536-598, June.
    13. Andrea Bernini & Giovanni Facchini & Cecilia Testa, 2023. "Race, Representation, and Local Governments in the US South: The Effect of the Voting Rights Act," Journal of Political Economy, University of Chicago Press, vol. 131(4), pages 994-1056.
    14. Ulrich K. Müller & Mark W. Watson, 2022. "Spatial Correlation Robust Inference," Econometrica, Econometric Society, vol. 90(6), pages 2901-2935, November.
    15. Daron Acemoglu & Suresh Naidu & Pascual Restrepo & James A. Robinson, 2019. "Democracy Does Cause Growth," Journal of Political Economy, University of Chicago Press, vol. 127(1), pages 47-100.
    16. Conley, Timothy G. & Kelly, Morgan, 2025. "The standard errors of persistence," Journal of International Economics, Elsevier, vol. 153(C).
    17. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    18. Bailey, Natalia & Pesaran, M. Hashem & Smith, L. Vanessa, 2019. "A multiple testing approach to the regularisation of large sample correlation matrices," Journal of Econometrics, Elsevier, vol. 208(2), pages 507-534.
    19. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    20. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    21. Stefano DellaVigna & Woojin Kim, 2022. "Policy Diffusion and Polarization across U.S. States," NBER Working Papers 30142, National Bureau of Economic Research, Inc.
    22. Kelejian, Harry H. & Prucha, Ingmar R., 2007. "HAC estimation in a spatial framework," Journal of Econometrics, Elsevier, vol. 140(1), pages 131-154, September.
    23. Elena Esposito & Tiziano Rotesi & Alessandro Saia & Mathias Thoenig, 2023. "Reconciliation Narratives: The Birth of a Nation after the US Civil War," American Economic Review, American Economic Association, vol. 113(6), pages 1461-1504, June.
    24. Lisa D Cook & Maggie E C Jones & Trevon D Logan & David Rosé, 2023. "The Evolution of Access to Public Accommodations in the United States," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 37-102.
    25. Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
    26. Thomas Barrios & Rebecca Diamond & Guido W. Imbens & Michal Kolesár, 2012. "Clustering, Spatial Correlations, and Randomization Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 578-591, June.
    27. Konrad Menzel, 2021. "Bootstrap With Cluster‐Dependence in Two or More Dimensions," Econometrica, Econometric Society, vol. 89(5), pages 2143-2188, September.
    28. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    29. Bruno Caprettini & Hans-Joachim Voth, 2023. "New Deal, New Patriots: How 1930s Government Spending Boosted Patriotism During World War II," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 465-513.
    30. Ulrich K. Müller & Mark W. Watson, 2023. "Spatial Correlation Robust Inference in Linear Regression and Panel Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1050-1064, October.
    31. Alberto Abadie & Anish Agarwal & Raaz Dwivedi & Abhin Shah, 2024. "Doubly Robust Inference in Causal Latent Factor Models," Papers 2402.11652, arXiv.org, revised Oct 2024.
    32. Kim, Min Seong & Sun, Yixiao, 2011. "Spatial heteroskedasticity and autocorrelation consistent estimation of covariance matrix," Journal of Econometrics, Elsevier, vol. 160(2), pages 349-371, February.
    33. Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B. & Vogelsang, Timothy J., 2016. "FIXED-b ASYMPTOTICS FOR SPATIALLY DEPENDENT ROBUST NONPARAMETRIC COVARIANCE MATRIX ESTIMATORS," Econometric Theory, Cambridge University Press, vol. 32(1), pages 154-186, February.
    34. David Azriel & Armin Schwartzman, 2015. "The Empirical Distribution of a Large Number of Correlated Normal Variables," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1217-1228, September.
    35. Ivan A. Canay & Joseph P. Romano & Azeem M. Shaikh, 2017. "Randomization Tests Under an Approximate Symmetry Assumption," Econometrica, Econometric Society, vol. 85, pages 1013-1030, May.
    36. Genevera I. Allen & Robert Tibshirani, 2012. "Inference with transposable data: modelling the effects of row and column correlations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 74(4), pages 721-743, September.
    37. Rodrigo Adão & Michal Kolesár & Eduardo Morales, 2019. "Shift-Share Designs: Theory and Inference," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(4), pages 1949-2010.
    38. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    39. Eli Ben-Michael & Avi Feller & Liyang Sun, 2023. "Using multiple outcomes to improve the synthetic control method," CeMMAP working papers 24/23, Institute for Fiscal Studies.
    40. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    41. Rodrigo Ad~ao & Michal Koles'ar & Eduardo Morales, 2018. "Shift-Share Designs: Theory and Inference," Papers 1806.07928, arXiv.org, revised Aug 2019.
    42. Case, Anne C. & Rosen, Harvey S. & Hines, James Jr., 1993. "Budget spillovers and fiscal policy interdependence : Evidence from the states," Journal of Public Economics, Elsevier, vol. 52(3), pages 285-307, October.
    43. Raj Chetty & Nathaniel Hendren & Patrick Kline & Emmanuel Saez, 2014. "Where is the land of Opportunity? The Geography of Intergenerational Mobility in the United States," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1553-1623.
    44. Conley, T. G., 1999. "GMM estimation with cross sectional dependence," Journal of Econometrics, Elsevier, vol. 92(1), pages 1-45, September.
    45. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    46. Hoff, Peter D., 2016. "Limitations on detecting row covariance in the presence of column covariance," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 249-258.
    47. Ibragimov, Rustam & Müller, Ulrich K., 2010. "t-Statistic Based Correlation and Heterogeneity Robust Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 453-468.
    48. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
    49. Ulrich K. Müller & Mark W. Watson, 2024. "Spatial Unit Roots and Spurious Regression," Econometrica, Econometric Society, vol. 92(5), pages 1661-1695, September.
    50. Moulton, Brent R, 1990. "An Illustration of a Pitfall in Estimating the Effects of Aggregate Variables on Micro Unit," The Review of Economics and Statistics, MIT Press, vol. 72(2), pages 334-338, May.
    51. Fabrizio Colella & Rafael Lalive & Seyhun Orcan Sakalli & Mathias Thoenig, 2023. "acreg: Arbitrary correlation regression," Stata Journal, StataCorp LLC, vol. 23(1), pages 119-147, March.
    52. Mette Langaas & Bo Henry Lindqvist & Egil Ferkingstad, 2005. "Estimating the proportion of true null hypotheses, with application to DNA microarray data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 555-572, September.
    53. Efron, Bradley, 2010. "Correlated z-Values and the Accuracy of Large-Scale Statistical Estimates," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1042-1055.
    54. Jin, Jiashun & Cai, T. Tony, 2007. "Estimating the Null and the Proportion of Nonnull Effects in Large-Scale Multiple Comparisons," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 495-506, June.
    55. Jens Ludwig & Sendhil Mullainathan & Jann Spiess, 2017. "Machine-Learning Tests for Effects on Multiple Outcomes," Papers 1707.01473, arXiv.org, revised May 2019.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    2. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    3. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    4. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Testing for the appropriate level of clustering in linear regression models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
    5. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    6. Bruno Ferman, 2023. "Inference in difference‐in‐differences: How much should we trust in independent clusters?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 358-369, April.
    7. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    8. Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
    9. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    10. Andreas Hagemann, 2019. "Permutation inference with a finite number of heterogeneous clusters," Papers 1907.01049, arXiv.org, revised Feb 2023.
    11. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    12. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    13. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    14. Michael P. Leung, 2022. "Dependence‐robust inference using resampled statistics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 270-285, March.
    15. Yong Cai, 2021. "A Modified Randomization Test for the Level of Clustering," Papers 2105.01008, arXiv.org, revised Jan 2022.
    16. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2021. "Wild Bootstrap and Asymptotic Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 505-519, March.
    17. Tom Boot & Gianmaria Niccodemi & Tom Wansbeek, 2023. "Unbiased estimation of the OLS covariance matrix when the errors are clustered," Empirical Economics, Springer, vol. 64(6), pages 2511-2533, June.
    18. Jeffrey D. Michler & Anna Josephson, 2022. "Recent developments in inference: practicalities for applied economics," Chapters, in: A Modern Guide to Food Economics, chapter 11, pages 235-268, Edward Elgar Publishing.
    19. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 318, University of California, Davis, Department of Economics.
    20. Matthew D. Webb, 2023. "Reworking wild bootstrap‐based inference for clustered errors," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(3), pages 839-858, August.

    More about this item

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2504.13295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.