IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2508.06594.html
   My bibliography  Save this paper

Stochastic Boundaries in Spatial General Equilibrium: A Diffusion-Based Approach to Causal Inference with Spillover Effects

Author

Listed:
  • Tatsuru Kikuchi

Abstract

This paper introduces a novel framework for causal inference in spatial economics that explicitly models the stochastic transition from partial to general equilibrium effects. We develop a Denoising Diffusion Probabilistic Model (DDPM) integrated with boundary detection methods from stochastic process theory to identify when and how treatment effects propagate beyond local markets. Our approach treats the evolution of spatial spillovers as a L\'evy process with jump-diffusion dynamics, where the first passage time to critical thresholds indicates regime shifts from partial to general equilibrium. Using CUSUM-based sequential detection, we identify the spatial and temporal boundaries at which local interventions become systemic. Applied to AI adoption across Japanese prefectures, we find that treatment effects exhibit L\'evy jumps at approximately 35km spatial scales, with general equilibrium effects amplifying partial equilibrium estimates by 42\%. Monte Carlo simulations show that ignoring these stochastic boundaries leads to underestimation of treatment effects by 28-67\%, with particular severity in densely connected economic regions. Our framework provides the first rigorous method for determining when spatial spillovers necessitate general equilibrium analysis, offering crucial guidance for policy evaluation in interconnected economies.

Suggested Citation

  • Tatsuru Kikuchi, 2025. "Stochastic Boundaries in Spatial General Equilibrium: A Diffusion-Based Approach to Causal Inference with Spillover Effects," Papers 2508.06594, arXiv.org.
  • Handle: RePEc:arx:papers:2508.06594
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2508.06594
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Patrick Kline & Enrico Moretti, 2014. "People, Places, and Public Policy: Some Simple Welfare Economics of Local Economic Development Programs," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 629-662, August.
    2. Stephen J. Redding & Esteban Rossi-Hansberg, 2017. "Quantitative Spatial Economics," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 21-58, September.
    3. Stephen Gibbons & Henry G. Overman, 2012. "Mostly Pointless Spatial Econometrics?," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 172-191, May.
    4. Alberto Abadie, 2020. "Statistical Nonsignificance in Empirical Economics," American Economic Review: Insights, American Economic Association, vol. 2(2), pages 193-208, June.
    5. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    6. Dave Donaldson, 2018. "Railroads of the Raj: Estimating the Impact of Transportation Infrastructure," American Economic Review, American Economic Association, vol. 108(4-5), pages 899-934, April.
    7. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    8. Xavier Gabaix & Parameswaran Gopikrishnan & Vasiliki Plerou & H. Eugene Stanley, 2006. "Institutional Investors and Stock Market Volatility," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 461-504.
    9. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    10. James J. Heckman, 2010. "Building Bridges between Structural and Program Evaluation Approaches to Evaluating Policy," Journal of Economic Literature, American Economic Association, vol. 48(2), pages 356-398, June.
    11. Charles F. Manski, 1993. "Identification of Endogenous Social Effects: The Reflection Problem," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(3), pages 531-542.
    12. Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2009. "Identification of peer effects through social networks," Journal of Econometrics, Elsevier, vol. 150(1), pages 41-55, May.
    13. David H. Autor & David Dorn & Gordon H. Hanson, 2013. "The China Syndrome: Local Labor Market Effects of Import Competition in the United States," American Economic Review, American Economic Association, vol. 103(6), pages 2121-2168, October.
    14. Daron Acemoglu & David Autor & Jonathon Hazell & Pascual Restrepo, 2022. "Artificial Intelligence and Jobs: Evidence from Online Vacancies," Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 293-340.
    15. Delgado, Michael S. & Florax, Raymond J.G.M., 2015. "Difference-in-differences techniques for spatial data: Local autocorrelation and spatial interaction," Economics Letters, Elsevier, vol. 137(C), pages 123-126.
    16. Diego A. Comin & Martí Mestieri, 2010. "An Intensive Exploration of Technology Diffusion," NBER Working Papers 16379, National Bureau of Economic Research, Inc.
    17. Michael Greenstone & Richard Hornbeck & Enrico Moretti, 2010. "Identifying Agglomeration Spillovers: Evidence from Winners and Losers of Large Plant Openings," Journal of Political Economy, University of Chicago Press, vol. 118(3), pages 536-598, June.
    18. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    19. Krugman, Paul, 1991. "Increasing Returns and Economic Geography," Journal of Political Economy, University of Chicago Press, vol. 99(3), pages 483-499, June.
    20. Roback, Jennifer, 1982. "Wages, Rents, and the Quality of Life," Journal of Political Economy, University of Chicago Press, vol. 90(6), pages 1257-1278, December.
    21. Anders Brix & Peter J. Diggle, 2001. "Spatiotemporal prediction for log‐Gaussian Cox processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 823-841.
    22. Duflo, Esther, 2017. "The Economist as Plumber," CEPR Discussion Papers 11881, C.E.P.R. Discussion Papers.
    23. Alexander Aue & Lajos Horváth, 2013. "Structural breaks in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 1-16, January.
    24. Matias Busso & Jesse Gregory & Patrick Kline, 2013. "Assessing the Incidence and Efficiency of a Prominent Place Based Policy," American Economic Review, American Economic Association, vol. 103(2), pages 897-947, April.
    25. Treb Allen & Costas Arkolakis, 2014. "Trade and the Topography of the Spatial Economy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(3), pages 1085-1140.
    26. Glasserman, Paul & Young, H. Peyton, 2016. "Contagion in financial networks," LSE Research Online Documents on Economics 68681, London School of Economics and Political Science, LSE Library.
    27. Diego Comin & Bart Hobijn, 2010. "An Exploration of Technology Diffusion," American Economic Review, American Economic Association, vol. 100(5), pages 2031-2059, December.
    28. Clarke, Damian, 2017. "Estimating Difference-in-Differences in the Presence of Spillovers," MPRA Paper 81604, University Library of Munich, Germany.
    29. Ferdinando Monte & Stephen J. Redding & Esteban Rossi-Hansberg, 2018. "Commuting, Migration, and Local Employment Elasticities," American Economic Review, American Economic Association, vol. 108(12), pages 3855-3890, December.
    30. Esther Duflo, 2017. "Richard T. Ely Lecture: The Economist as Plumber," American Economic Review, American Economic Association, vol. 107(5), pages 1-26, May.
    31. Susan Athey & Guido W. Imbens, 2019. "Machine Learning Methods That Economists Should Know About," Annual Review of Economics, Annual Reviews, vol. 11(1), pages 685-725, August.
    32. Paul Glasserman & H. Peyton Young, 2016. "Contagion in Financial Networks," Journal of Economic Literature, American Economic Association, vol. 54(3), pages 779-831, September.
    33. Rodrigo Adão & Michal Kolesár & Eduardo Morales, 2019. "Shift-Share Designs: Theory and Inference," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 134(4), pages 1949-2010.
    34. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    35. Michele Aquaro & Natalia Bailey & M. Hashem Pesaran, 2021. "Estimation and inference for spatial models with heterogeneous coefficients: An application to US house prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 18-44, January.
    36. Rodrigo Ad~ao & Michal Koles'ar & Eduardo Morales, 2018. "Shift-Share Designs: Theory and Inference," Papers 1806.07928, arXiv.org, revised Aug 2019.
    37. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    38. Nancey Green Leigh & Benjamin R. Kraft, 2018. "Emerging robotic regions in the United States: insights for regional economic evolution," Regional Studies, Taylor & Francis Journals, vol. 52(6), pages 804-815, June.
    39. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, November.
    40. Larry Eisenberg & Thomas H. Noe, 2001. "Systemic Risk in Financial Systems," Management Science, INFORMS, vol. 47(2), pages 236-249, February.
    41. Yacine Aït-Sahalia & Jean Jacod, 2014. "High-Frequency Financial Econometrics," Economics Books, Princeton University Press, edition 1, number 10261.
    42. Ajay Agrawal & Joshua Gans & Avi Goldfarb, 2018. "Introduction to "The Economics of Artificial Intelligence: An Agenda"," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 1-19, National Bureau of Economic Research, Inc.
    43. Esther Duflo, 2017. "The Economist as Plumber," NBER Working Papers 23213, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    2. Rodrigo Adão & Costas Arkolakis & Federico Esposito, 2019. "General Equilibrium Effects in Space: Theory and Measurement," NBER Working Papers 25544, National Bureau of Economic Research, Inc.
    3. Gorjian, Mahshid, 2025. "Statistical and Methodological Advances in Spatial Economics: A Comprehensive Review of Models, Empirical Strategies, and Policy Evaluation," MPRA Paper 125636, University Library of Munich, Germany.
    4. Stephan Heblich & Stephen J Redding & Daniel M Sturm, 2020. "The Making of the Modern Metropolis: Evidence from London," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 135(4), pages 2059-2133.
    5. Stephen J. Redding & Esteban Rossi-Hansberg, 2017. "Quantitative Spatial Economics," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 21-58, September.
    6. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    7. Maximilian v. Ehrlich & Henry G. Overman, 2020. "Place-Based Policies and Spatial Disparities across European Cities," Journal of Economic Perspectives, American Economic Association, vol. 34(3), pages 128-149, Summer.
    8. Bluhm, Richard & Dreher, Axel & Fuchs, Andreas & Parks, Bradley C. & Strange, Austin M. & Tierney, Michael J., 2025. "Connective financing: Chinese infrastructure projects and the diffusion of economic activity in developing countries," Journal of Urban Economics, Elsevier, vol. 145(C).
    9. Ahlfeldt, Gabriel M. & Heblich, Stephan & Seidel, Tobias, 2023. "Micro-geographic property price and rent indices," Regional Science and Urban Economics, Elsevier, vol. 98(C).
    10. Stef Proost & Jacques-François Thisse, 2019. "What Can Be Learned from Spatial Economics?," Journal of Economic Literature, American Economic Association, vol. 57(3), pages 575-643, September.
    11. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    12. Rodrigo Ad'o & Costas Arkolakis & Federico Esp'sito, 2019. "Spatial Linkages, Global Shocks, and Local Labor Markets: Theory and Evidence," Cowles Foundation Discussion Papers 2163, Cowles Foundation for Research in Economics, Yale University.
    13. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Ferdinando Monte & Stephen J. Redding & Esteban Rossi-Hansberg, 2018. "Commuting, Migration, and Local Employment Elasticities," American Economic Review, American Economic Association, vol. 108(12), pages 3855-3890, December.
    15. Pablo D. Fajgelbaum & Edouard Schaal, 2020. "Optimal Transport Networks in Spatial Equilibrium," Econometrica, Econometric Society, vol. 88(4), pages 1411-1452, July.
    16. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    17. Gathmann, Christina & Helm, Ines & Schönberg, Uta, 2014. "Spillover Effects in Local Labor Markets: Evidence from Mass Layoffs," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100378, Verein für Socialpolitik / German Economic Association.
    18. Benny Kleinman & Ernest Liu & Stephen J. Redding, 2023. "Dynamic Spatial General Equilibrium," Econometrica, Econometric Society, vol. 91(2), pages 385-424, March.
    19. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    20. Redding, Stephen, 2020. "Trade and Geography," CEPR Discussion Papers 15268, C.E.P.R. Discussion Papers.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2508.06594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.