IDEAS home Printed from https://ideas.repec.org/p/ecl/stabus/3859.html
   My bibliography  Save this paper

Experimental Design in Two-Sided Platforms: An Analysis of Bias

Author

Listed:
  • Johari, Ramesh

    (Stanford U)

  • Li, Hannah

    (Stanford U)

  • Weintraub, Gabriel

    (Stanford U)

Abstract

We develop an analytical framework to study experimental design in two-sided platforms. In the settings we consider, customers rent listings; rented listings are occupied for some amount of time, then become available. Platforms typically use two common designs to study interventions in such settings: customer-side randomization (CR), and listing-side randomization (LR), along with associated estimators. We develop a stochastic model and associated mean field limit to capture dynamics in such systems, and use our model to investigate how performance of these estimators is affected by interference effects between listings and between customers. Good experimental design depends on market balance: we show that in highly demand-constrained markets, CR is unbiased, while LR is biased; conversely, in highly supply-constrained markets, LR is unbiased, while CR is biased. We also study a design based on two-sided randomization (TSR) where both customers and listings are randomized to treatment and control, and show that appropriate choices of such designs can be unbiased in both extremes of market balance, and also yield low bias in intermediate regimes of market balance.

Suggested Citation

  • Johari, Ramesh & Li, Hannah & Weintraub, Gabriel, 2020. "Experimental Design in Two-Sided Platforms: An Analysis of Bias," Research Papers 3859, Stanford University, Graduate School of Business.
  • Handle: RePEc:ecl:stabus:3859
    as

    Download full text from publisher

    File URL: https://www.gsb.stanford.edu/gsb-cmis/gsb-cmis-download-auth/494316
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Evan Munro & Stefan Wager & Kuang Xu, 2021. "Treatment Effects in Market Equilibrium," Papers 2109.11647, arXiv.org, revised Jan 2023.
    2. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Efficient Treatment Effect Estimation in Observational Studies under Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2022.
    3. Ariel Boyarsky & Hongseok Namkoong & Jean Pouget-Abadie, 2023. "Modeling Interference Using Experiment Roll-out," Papers 2305.10728, arXiv.org, revised Aug 2023.
    4. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecl:stabus:3859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/gsstaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.