IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.13094.html
   My bibliography  Save this paper

Inference in Experiments with Matched Pairs and Imperfect Compliance

Author

Listed:
  • Yuehao Bai
  • Hongchang Guo
  • Azeem M. Shaikh
  • Max Tabord-Meehan

Abstract

This paper studies inference for the local average treatment effect in randomized controlled trials with imperfect compliance where treatment status is determined according to "matched pairs." By "matched pairs," we mean that units are sampled i.i.d. from the population of interest, paired according to observed, baseline covariates and finally, within each pair, one unit is selected at random for treatment. Under weak assumptions governing the quality of the pairings, we first derive the limit distribution of the usual Wald (i.e., two-stage least squares) estimator of the local average treatment effect. We show further that conventional heteroskedasticity-robust estimators of the Wald estimator's limiting variance are generally conservative, in that their probability limits are (typically strictly) larger than the limiting variance. We therefore provide an alternative estimator of the limiting variance that is consistent. Finally, we consider the use of additional observed, baseline covariates not used in pairing units to increase the precision with which we can estimate the local average treatment effect. To this end, we derive the limiting behavior of a two-stage least squares estimator of the local average treatment effect which includes both the additional covariates in addition to pair fixed effects, and show that its limiting variance is always less than or equal to that of the Wald estimator. To complete our analysis, we provide a consistent estimator of this limiting variance. A simulation study confirms the practical relevance of our theoretical results. Finally, we apply our results to revisit a prominent experiment studying the effect of macroinsurance on microenterprise in Egypt.

Suggested Citation

  • Yuehao Bai & Hongchang Guo & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "Inference in Experiments with Matched Pairs and Imperfect Compliance," Papers 2307.13094, arXiv.org, revised Jun 2024.
  • Handle: RePEc:arx:papers:2307.13094
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.13094
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. P. A. Riach & J. Rich, 2002. "Field Experiments of Discrimination in the Market Place," Economic Journal, Royal Economic Society, vol. 112(483), pages 480-518, November.
    2. Sven Resnjanskij & Jens Ruhose & Simon Wiederhold & Ludger Woessmann & Katharina Wedel, 2024. "Can Mentoring Alleviate Family Disadvantage in Adolescence? A Field Experiment to Improve Labor Market Prospects," Journal of Political Economy, University of Chicago Press, vol. 132(3), pages 1013-1062.
    3. Yuehao Bai & Joseph P. Romano & Azeem M. Shaikh, 2022. "Inference in Experiments With Matched Pairs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1726-1737, October.
    4. Imbens, Guido W & Angrist, Joshua D, 1994. "Identification and Estimation of Local Average Treatment Effects," Econometrica, Econometric Society, vol. 62(2), pages 467-475, March.
    5. Han Hong & Denis Nekipelov, 2010. "Semiparametric efficiency in nonlinear LATE models," Quantitative Economics, Econometric Society, vol. 1(2), pages 279-304, November.
    6. Miriam Bruhn & David McKenzie, 2009. "In Pursuit of Balance: Randomization in Practice in Development Field Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 200-232, October.
    7. Groh, Matthew & McKenzie, David, 2016. "Macroinsurance for microenterprises: A randomized experiment in post-revolution Egypt," Journal of Development Economics, Elsevier, vol. 118(C), pages 13-25.
    8. Max Cytrynbaum, 2023. "Covariate Adjustment in Stratified Experiments," Papers 2302.03687, arXiv.org, revised Jul 2024.
    9. Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Aug 2024.
    10. Bai, Yuehao & Jiang, Liang & Romano, Joseph P. & Shaikh, Azeem M. & Zhang, Yichong, 2024. "Covariate adjustment in experiments with matched pairs," Journal of Econometrics, Elsevier, vol. 241(1).
    11. Yuehao Bai & Jizhou Liu & Max Tabord-Meehan, 2022. "Inference for Matched Tuples and Fully Blocked Factorial Designs," Papers 2206.04157, arXiv.org, revised Nov 2023.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Aug 2024.
    2. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bai, Yuehao & Jiang, Liang & Romano, Joseph P. & Shaikh, Azeem M. & Zhang, Yichong, 2024. "Covariate adjustment in experiments with matched pairs," Journal of Econometrics, Elsevier, vol. 241(1).
    2. Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Aug 2024.
    3. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    4. Max Cytrynbaum, 2024. "Finely Stratified Rerandomization Designs," Papers 2407.03279, arXiv.org, revised Jul 2024.
    5. Yuehao Bai & Meng Hsuan Hsieh & Jizhou Liu & Max Tabord-Meehan, 2022. "Revisiting the Analysis of Matched-Pair and Stratified Experiments in the Presence of Attrition," Papers 2209.11840, arXiv.org, revised Oct 2023.
    6. Yuehao Bai & Meng Hsuan Hsieh & Jizhou Liu & Max Tabord‐Meehan, 2024. "Revisiting the analysis of matched‐pair and stratified experiments in the presence of attrition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 256-268, March.
    7. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    8. María laura Alzúa & Guillermo Cruces & Carolina Lopez, 2016. "Long-Run Effects Of Youth Training Programs: Experimental Evidence From Argentina," Economic Inquiry, Western Economic Association International, vol. 54(4), pages 1839-1859, October.
    9. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    10. Laura Forastiere & Patrizia Lattarulo & Marco Mariani & Fabrizia Mealli & Laura Razzolini, 2021. "Exploring Encouragement, Treatment, and Spillover Effects Using Principal Stratification, With Application to a Field Experiment on Teens’ Museum Attendance," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 244-258, January.
    11. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    12. Yumou Qiu & Jing Tao & Xiao‐Hua Zhou, 2021. "Inference of heterogeneous treatment effects using observational data with high‐dimensional covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 1016-1043, November.
    13. Eszter Czibor & David Jimenez‐Gomez & John A. List, 2019. "The Dozen Things Experimental Economists Should Do (More of)," Southern Economic Journal, John Wiley & Sons, vol. 86(2), pages 371-432, October.
    14. Liang Jiang & Xiaobin Liu & Peter C. B. Phillips & Yichong Zhang, 2024. "Bootstrap Inference for Quantile Treatment Effects in Randomized Experiments with Matched Pairs," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 542-556, March.
    15. George Gui & Harikesh Nair & Fengshi Niu, 2021. "Auction Throttling and Causal Inference of Online Advertising Effects," Papers 2112.15155, arXiv.org, revised Feb 2022.
    16. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    17. Carpena, Fenella & Zia, Bilal, 2020. "The causal mechanism of financial education: Evidence from mediation analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 177(C), pages 143-184.
    18. Ansel Jason & Hong Han & Jessie Li and, 2018. "OLS and 2SLS in Randomized and Conditionally Randomized Experiments," Journal of Economics and Statistics (Jahrbuecher fuer Nationaloekonomie und Statistik), De Gruyter, vol. 238(3-4), pages 243-293, July.
    19. Paloyo, Alfredo R. & Rogan, Sally & Siminski, Peter, 2016. "The effect of supplemental instruction on academic performance: An encouragement design experiment," Economics of Education Review, Elsevier, vol. 55(C), pages 57-69.
    20. Boyd, Chris M. & Díez-Amigo, Sandro, 2023. "Effectiveness of free financial education provided by for-profit financial institutions: Experimental evidence from rural Peru," Economics of Education Review, Elsevier, vol. 97(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.13094. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.