IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2503.10851.html
   My bibliography  Save this paper

A New Design-Based Variance Estimator for Finely Stratified Experiments

Author

Listed:
  • Yuehao Bai
  • Xun Huang
  • Joseph P. Romano
  • Azeem M. Shaikh
  • Max Tabord-Meehan

Abstract

This paper considers the problem of design-based inference for the average treatment effect in finely stratified experiments. Here, by "design-based'' we mean that the only source of uncertainty stems from the randomness in treatment assignment; by "finely stratified'' we mean that units are stratified into groups of a fixed size according to baseline covariates and then, within each group, a fixed number of units are assigned uniformly at random to treatment and the remainder to control. In this setting we present a novel estimator of the variance of the difference-in-means based on pairing "adjacent" strata. Importantly, our estimator is well defined even in the challenging setting where there is exactly one treated or control unit per stratum. We prove that our estimator is upward-biased, and thus can be used for inference under mild restrictions on the finite population. We compare our estimator with some well-known estimators that have been proposed previously in this setting, and demonstrate that, while these estimators are also upward-biased, our estimator has smaller bias and therefore leads to more precise inferences whenever adjacent strata are sufficiently similar. To further understand when our estimator leads to more precise inferences, we introduce a framework motivated by a thought experiment in which the finite population is modeled as having been drawn once in an i.i.d. fashion from a well-behaved probability distribution. In this framework, we argue that our estimator dominates the others in terms of limiting bias and that these improvements are strict except under strong restrictions on the treatment effects. Finally, we illustrate the practical relevance of our theoretical results through a simulation study, which reveals that our estimator can in fact lead to substantially more precise inferences, especially when the quality of stratification is high.

Suggested Citation

  • Yuehao Bai & Xun Huang & Joseph P. Romano & Azeem M. Shaikh & Max Tabord-Meehan, 2025. "A New Design-Based Variance Estimator for Finely Stratified Experiments," Papers 2503.10851, arXiv.org, revised May 2025.
  • Handle: RePEc:arx:papers:2503.10851
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2503.10851
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuehao Bai & Hongchang Guo & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "Inference in Experiments with Matched Pairs and Imperfect Compliance," Papers 2307.13094, arXiv.org, revised Jun 2024.
    2. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    3. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," Papers 2206.07845, arXiv.org.
    4. Bai, Yuehao & Jiang, Liang & Romano, Joseph P. & Shaikh, Azeem M. & Zhang, Yichong, 2024. "Covariate adjustment in experiments with matched pairs," Journal of Econometrics, Elsevier, vol. 241(1).
    5. Max Cytrynbaum, 2023. "Covariate Adjustment in Stratified Experiments," Papers 2302.03687, arXiv.org, revised Jul 2024.
    6. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," American Economic Review, American Economic Association, vol. 112(12), pages 3911-3940, December.
    7. Liang Jiang & Xiaobin Liu & Peter C. B. Phillips & Yichong Zhang, 2024. "Bootstrap Inference for Quantile Treatment Effects in Randomized Experiments with Matched Pairs," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 542-556, March.
    8. Fangzhou Su & Peng Ding, 2021. "Model‐assisted analyses of cluster‐randomized experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 994-1015, November.
    9. Colin B Fogarty, 2018. "Regression-assisted inference for the average treatment effect in paired experiments," Biometrika, Biometrika Trust, vol. 105(4), pages 994-1000.
    10. Xinran Li & Peng Ding, 2017. "General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1759-1769, October.
    11. Yuehao Bai & Joseph P. Romano & Azeem M. Shaikh, 2022. "Inference in Experiments With Matched Pairs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1726-1737, October.
    12. Nicole E. Pashley & Luke W. Miratrix, 2021. "Insights on Variance Estimation for Blocked and Matched Pairs Designs," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 271-296, June.
    13. Yuehao Bai & Jizhou Liu & Max Tabord‐Meehan, 2024. "Inference for matched tuples and fully blocked factorial designs," Quantitative Economics, Econometric Society, vol. 15(2), pages 279-330, May.
    14. Colin B. Fogarty, 2018. "On mitigating the analytical limitations of finely stratified experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 1035-1056, November.
    15. Bai, Yuehao & Liu, Jizhou & Shaikh, Azeem M. & Tabord-Meehan, Max, 2024. "Inference in cluster randomized trials with matched pairs," Journal of Econometrics, Elsevier, vol. 245(1).
    16. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org, revised Apr 2025.
    2. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    3. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    4. Yuehao Bai & Jizhou Liu & Max Tabord-Meehan, 2022. "Inference for Matched Tuples and Fully Blocked Factorial Designs," Papers 2206.04157, arXiv.org, revised Nov 2023.
    5. Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Mar 2025.
    6. Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023. "Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations," Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
    7. Bai, Yuehao & Jiang, Liang & Romano, Joseph P. & Shaikh, Azeem M. & Zhang, Yichong, 2024. "Covariate adjustment in experiments with matched pairs," Journal of Econometrics, Elsevier, vol. 241(1).
    8. Bai, Yuehao & Liu, Jizhou & Shaikh, Azeem M. & Tabord-Meehan, Max, 2024. "Inference in cluster randomized trials with matched pairs," Journal of Econometrics, Elsevier, vol. 245(1).
    9. Fangzhou Su & Peng Ding, 2021. "Model‐assisted analyses of cluster‐randomized experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 994-1015, November.
    10. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    11. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    12. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    13. Max Cytrynbaum, 2024. "Finely Stratified Rerandomization Designs," Papers 2407.03279, arXiv.org, revised Jan 2025.
    14. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," Papers 2206.07845, arXiv.org.
    15. Jinglong Zhao, 2023. "Adaptive Neyman Allocation," Papers 2309.08808, arXiv.org, revised Sep 2023.
    16. Yuehao Bai & Hongchang Guo & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "Inference in Experiments with Matched Pairs and Imperfect Compliance," Papers 2307.13094, arXiv.org, revised Jun 2024.
    17. Yuehao Bai & Meng Hsuan Hsieh & Jizhou Liu & Max Tabord-Meehan, 2022. "Revisiting the Analysis of Matched-Pair and Stratified Experiments in the Presence of Attrition," Papers 2209.11840, arXiv.org, revised Oct 2023.
    18. Yuehao Bai & Meng Hsuan Hsieh & Jizhou Liu & Max Tabord‐Meehan, 2024. "Revisiting the analysis of matched‐pair and stratified experiments in the presence of attrition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 256-268, March.
    19. Yuehao Bai & Jizhou Liu & Max Tabord‐Meehan, 2024. "Inference for matched tuples and fully blocked factorial designs," Quantitative Economics, Econometric Society, vol. 15(2), pages 279-330, May.
    20. Liang Jiang & Liyao Li & Ke Miao & Yichong Zhang, 2023. "Adjustment with Many Regressors Under Covariate-Adaptive Randomizations," Papers 2304.08184, arXiv.org, revised Feb 2025.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2503.10851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.