IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2302.04380.html
   My bibliography  Save this paper

Covariate Adjustment in Experiments with Matched Pairs

Author

Listed:
  • Yuehao Bai
  • Liang Jiang
  • Joseph P. Romano
  • Azeem M. Shaikh
  • Yichong Zhang

Abstract

This paper studies inference on the average treatment effect in experiments in which treatment status is determined according to "matched pairs" and it is additionally desired to adjust for observed, baseline covariates to gain further precision. By a "matched pairs" design, we mean that units are sampled i.i.d. from the population of interest, paired according to observed, baseline covariates and finally, within each pair, one unit is selected at random for treatment. Importantly, we presume that not all observed, baseline covariates are used in determining treatment assignment. We study a broad class of estimators based on a "doubly robust" moment condition that permits us to study estimators with both finite-dimensional and high-dimensional forms of covariate adjustment. We find that estimators with finite-dimensional, linear adjustments need not lead to improvements in precision relative to the unadjusted difference-in-means estimator. This phenomenon persists even if the adjustments are interacted with treatment; in fact, doing so leads to no changes in precision. However, gains in precision can be ensured by including fixed effects for each of the pairs. Indeed, we show that this adjustment is the "optimal" finite-dimensional, linear adjustment. We additionally study two estimators with high-dimensional forms of covariate adjustment based on the LASSO. For each such estimator, we show that it leads to improvements in precision relative to the unadjusted difference-in-means estimator and also provide conditions under which it leads to the "optimal" nonparametric, covariate adjustment. A simulation study confirms the practical relevance of our theoretical analysis, and the methods are employed to reanalyze data from an experiment using a "matched pairs" design to study the effect of macroinsurance on microenterprise.

Suggested Citation

  • Yuehao Bai & Liang Jiang & Joseph P. Romano & Azeem M. Shaikh & Yichong Zhang, 2023. "Covariate Adjustment in Experiments with Matched Pairs," Papers 2302.04380, arXiv.org, revised Oct 2023.
  • Handle: RePEc:arx:papers:2302.04380
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2302.04380
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Yang L. & Tsiatis A. A., 2001. "Efficiency Study of Estimators for a Treatment Effect in a Pretest-Posttest Trial," The American Statistician, American Statistical Association, vol. 55, pages 314-321, November.
    2. A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012. "Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain," Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
    3. Yuehao Bai & Joseph P. Romano & Azeem M. Shaikh, 2022. "Inference in Experiments With Matched Pairs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1726-1737, October.
    4. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
    5. Edward Wu & Johann A. Gagnon-Bartsch, 2021. "Design-Based Covariate Adjustments in Paired Experiments," Journal of Educational and Behavioral Statistics, , vol. 46(1), pages 109-132, February.
    6. Miriam Bruhn & David McKenzie, 2009. "In Pursuit of Balance: Randomization in Practice in Development Field Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 200-232, October.
    7. Alberto Abadie & Guido W. Imbens, 2008. "Estimation of the Conditional Variance in Paired Experiments," Annals of Economics and Statistics, GENES, issue 91-92, pages 175-187.
    8. Groh, Matthew & McKenzie, David, 2016. "Macroinsurance for microenterprises: A randomized experiment in post-revolution Egypt," Journal of Development Economics, Elsevier, vol. 118(C), pages 13-25.
    9. Max Cytrynbaum, 2023. "Covariate Adjustment in Stratified Experiments," Papers 2302.03687, arXiv.org, revised Jul 2024.
    10. Akanksha Negi & Jeffrey M. Wooldridge, 2021. "Revisiting regression adjustment in experiments with heterogeneous treatment effects," Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 504-534, April.
    11. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    12. Denis Chetverikov & Jesper Riis-Vestergaard S{o}rensen, 2021. "Selecting Penalty Parameters of High-Dimensional M-Estimators using Bootstrapping after Cross-Validation," Papers 2104.04716, arXiv.org, revised Nov 2024.
    13. Rachel Glennerster & Kudzai Takavarasha, 2013. "Running Randomized Evaluations: A Practical Guide," Economics Books, Princeton University Press, edition 1, number 10085.
    14. Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Aug 2024.
    15. P L Cohen & C B Fogarty, 2024. "No-harm calibration for generalized Oaxaca–Blinder estimators," Biometrika, Biometrika Trust, vol. 111(1), pages 331-338.
    16. repec:adr:anecst:y:2008:i:91-92:p:09 is not listed on IDEAS
    17. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    18. Colin B Fogarty, 2018. "Regression-assisted inference for the average treatment effect in paired experiments," Biometrika, Biometrika Trust, vol. 105(4), pages 994-1000.
    19. Yuehao Bai & Jizhou Liu & Max Tabord-Meehan, 2022. "Inference for Matched Tuples and Fully Blocked Factorial Designs," Papers 2206.04157, arXiv.org, revised Nov 2023.
    20. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuehao Bai & Hongchang Guo & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "Inference in Experiments with Matched Pairs and Imperfect Compliance," Papers 2307.13094, arXiv.org, revised Jun 2024.
    2. Liang Jiang & Liyao Li & Ke Miao & Yichong Zhang, 2023. "Adjustment with Many Regressors Under Covariate-Adaptive Randomizations," Papers 2304.08184, arXiv.org, revised Nov 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    2. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    3. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," Papers 2206.07845, arXiv.org.
    4. Yuehao Bai & Hongchang Guo & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "Inference in Experiments with Matched Pairs and Imperfect Compliance," Papers 2307.13094, arXiv.org, revised Jun 2024.
    5. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    7. Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.
    8. Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
    9. Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Aug 2024.
    10. Yuehao Bai & Meng Hsuan Hsieh & Jizhou Liu & Max Tabord-Meehan, 2022. "Revisiting the Analysis of Matched-Pair and Stratified Experiments in the Presence of Attrition," Papers 2209.11840, arXiv.org, revised Oct 2023.
    11. Yuehao Bai & Meng Hsuan Hsieh & Jizhou Liu & Max Tabord‐Meehan, 2024. "Revisiting the analysis of matched‐pair and stratified experiments in the presence of attrition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 256-268, March.
    12. Max Cytrynbaum, 2023. "Covariate Adjustment in Stratified Experiments," Papers 2302.03687, arXiv.org, revised Jul 2024.
    13. Zhengyuan Zhou & Susan Athey & Stefan Wager, 2023. "Offline Multi-Action Policy Learning: Generalization and Optimization," Operations Research, INFORMS, vol. 71(1), pages 148-183, January.
    14. Bryan T. Kelly & Asaf Manela & Alan Moreira, 2019. "Text Selection," NBER Working Papers 26517, National Bureau of Economic Research, Inc.
    15. Undral Byambadalai, 2022. "Identification and Inference for Welfare Gains without Unconfoundedness," Papers 2207.04314, arXiv.org.
    16. Jian, L. & Linton, O. B. & Tang, H. & Zhang, Y., 2023. "Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance," Janeway Institute Working Papers 2315, Faculty of Economics, University of Cambridge.
    17. Philipp Bach & Victor Chernozhukov & Malte S. Kurz & Martin Spindler & Sven Klaassen, 2021. "DoubleML -- An Object-Oriented Implementation of Double Machine Learning in R," Papers 2103.09603, arXiv.org, revised Jun 2024.
    18. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    19. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," Working Papers hal-03455978, HAL.
    20. Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023. "Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations," Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.04380. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.