IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2506.05945.html

On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization

Author

Listed:
  • Undral Byambadalai
  • Tomu Hirata
  • Tatsushi Oka
  • Shota Yasui

Abstract

This paper focuses on the estimation of distributional treatment effects in randomized experiments that use covariate-adaptive randomization (CAR). These include designs such as Efron's biased-coin design and stratified block randomization, where participants are first grouped into strata based on baseline covariates and assigned treatments within each stratum to ensure balance across groups. In practice, datasets often contain additional covariates beyond the strata indicators. We propose a flexible distribution regression framework that leverages off-the-shelf machine learning methods to incorporate these additional covariates, enhancing the precision of distributional treatment effect estimates. We establish the asymptotic distribution of the proposed estimator and introduce a valid inference procedure. Furthermore, we derive the semiparametric efficiency bound for distributional treatment effects under CAR and demonstrate that our regression-adjusted estimator attains this bound. Simulation studies and empirical analyses of microcredit programs highlight the practical advantages of our method.

Suggested Citation

  • Undral Byambadalai & Tomu Hirata & Tatsushi Oka & Shota Yasui, 2025. "On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization," Papers 2506.05945, arXiv.org.
  • Handle: RePEc:arx:papers:2506.05945
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2506.05945
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bingkai Wang & Ryoko Susukida & Ramin Mojtabai & Masoumeh Amin-Esmaeili & Michael Rosenblum, 2023. "Model-Robust Inference for Clinical Trials that Improve Precision by Stratified Randomization and Covariate Adjustment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 1152-1163, April.
    2. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    3. Stefan Wager & Susan Athey, 2018. "Estimation and Inference of Heterogeneous Treatment Effects using Random Forests," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
    4. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    5. Tatsushi Oka & Ken Yamada, 2023. "Heterogeneous Impact of the Minimum Wage: Implications for Changes in Between- and Within-Group Inequality," Journal of Human Resources, University of Wisconsin Press, vol. 58(1), pages 335-362.
    6. Sergio Firpo, 2007. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
    7. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    8. Ruofan Xu & Jiti Gao & Tatsushi Oka & Yoon–Jae Whang, 2025. "Quantile random-coefficient regression with interactive fixed effects: Heterogeneous group-level policy evaluation," Econometric Reviews, Taylor & Francis Journals, vol. 44(5), pages 630-648, May.
    9. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    10. Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023. "Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations," Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
    11. Marianne P. Bitler & Jonah B. Gelbach & Hilary W. Hoynes, 2006. "What Mean Impacts Miss: Distributional Effects of Welfare Reform Experiments," American Economic Review, American Economic Association, vol. 96(4), pages 988-1012, September.
    12. Brantly Callaway & Tong Li, 2019. "Quantile treatment effects in difference in differences models with panel data," Quantitative Economics, Econometric Society, vol. 10(4), pages 1579-1618, November.
    13. Peng Ding & Avi Feller & Luke Miratrix, 2019. "Decomposing Treatment Effect Variation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 304-317, January.
    14. X Nie & S Wager, 2021. "Quasi-oracle estimation of heterogeneous treatment effects [TensorFlow: A system for large-scale machine learning]," Biometrika, Biometrika Trust, vol. 108(2), pages 299-319.
    15. Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
    16. James J. Heckman & Jeffrey Smith & Nancy Clements, 1997. "Making The Most Out Of Programme Evaluations and Social Experiments: Accounting For Heterogeneity in Programme Impacts," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 487-535.
    17. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, January.
    18. Bai, Yuehao & Jiang, Liang & Romano, Joseph P. & Shaikh, Azeem M. & Zhang, Yichong, 2024. "Covariate adjustment in experiments with matched pairs," Journal of Econometrics, Elsevier, vol. 241(1).
    19. Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
    20. A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017. "Program Evaluation and Causal Inference With High‐Dimensional Data," Econometrica, Econometric Society, vol. 85, pages 233-298, January.
    21. Yang L. & Tsiatis A. A., 2001. "Efficiency Study of Estimators for a Treatment Effect in a Pretest-Posttest Trial," The American Statistician, American Statistical Association, vol. 55, pages 314-321, November.
    22. Orazio Attanasio & Britta Augsburg & Ralph De Haas & Emla Fitzsimons & Heike Harmgart, 2015. "The Impacts of Microfinance: Evidence from Joint-Liability Lending in Mongolia," American Economic Journal: Applied Economics, American Economic Association, vol. 7(1), pages 90-122, January.
    23. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    24. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomu Hirata & Undral Byambadalai & Tatsushi Oka & Shota Yasui & Shingo Uto, 2025. "Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks," Papers 2507.07738, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Undral Byambadalai & Tomu Hirata & Tatsushi Oka & Shota Yasui, 2025. "Beyond the Average: Distributional Causal Inference under Imperfect Compliance," Papers 2509.15594, arXiv.org, revised Oct 2025.
    2. Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.
    3. Tatsushi Oka & Shota Yasui & Yuta Hayakawa & Undral Byambadalai, 2024. "Regression Adjustment for Estimating Distributional Treatment Effects in Randomized Controlled Trials," Papers 2407.14074, arXiv.org, revised Jan 2025.
    4. Nathan Kallus, 2023. "Treatment Effect Risk: Bounds and Inference," Management Science, INFORMS, vol. 69(8), pages 4579-4590, August.
    5. Tomu Hirata & Undral Byambadalai & Tatsushi Oka & Shota Yasui & Shingo Uto, 2025. "Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks," Papers 2507.07738, arXiv.org.
    6. Nathan Kallus, 2022. "Treatment Effect Risk: Bounds and Inference," Papers 2201.05893, arXiv.org, revised Jul 2022.
    7. Pedro H. C. Sant'Anna, 2016. "Program Evaluation with Right-Censored Data," Papers 1604.02642, arXiv.org.
    8. Blaise Melly und Kaspar W thrich, 2016. "Local quantile treatment effects," Diskussionsschriften dp1605, Universitaet Bern, Departement Volkswirtschaft.
    9. Paul. B. Kenfac Dongmezo & P. N. Mwita & I. R. Kamga Tchwaket, 2018. "Distributive and Quantile Treatment Effects: Imputation Based Estimators Approach," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 7(2), pages 1-3.
    10. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    11. Rahul Singh & Liyang Sun, 2024. "Double robustness for complier parameters and a semi-parametric test for complier characteristics," The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 1-20.
    12. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    13. Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
    14. Chen, Zhenshan & Towe, Charles & He, Xi, 2025. "Heterogeneous flood zone effects on coastal housing prices - Risk signal and mandatory costs," Journal of Environmental Economics and Management, Elsevier, vol. 131(C).
    15. David M. Ritzwoller & Vasilis Syrgkanis, 2024. "Simultaneous Inference for Local Structural Parameters with Random Forests," Papers 2405.07860, arXiv.org, revised Sep 2024.
    16. Neng-Chieh Chang, 2020. "The Mode Treatment Effect," Papers 2007.11606, arXiv.org.
    17. Afrouz Azadikhah Jahromi & Brantly Callaway, 2022. "Heterogeneous Effects of Job Displacement on Earnings," Empirical Economics, Springer, vol. 62(1), pages 213-245, January.
    18. Callaway, Brantly, 2021. "Bounds on distributional treatment effect parameters using panel data with an application on job displacement," Journal of Econometrics, Elsevier, vol. 222(2), pages 861-881.
    19. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    20. Marianne P. Bitler & Hilary W. Hoynes & Thurston Domina, 2014. "Experimental Evidence on Distributional Effects of Head Start," NBER Working Papers 20434, National Bureau of Economic Research, Inc.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2506.05945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.