Author
Listed:
- Tomu Hirata
- Undral Byambadalai
- Tatsushi Oka
- Shota Yasui
- Shingo Uto
Abstract
We propose a novel multi-task neural network approach for estimating distributional treatment effects (DTE) in randomized experiments. While DTE provides more granular insights into the experiment outcomes over conventional methods focusing on the Average Treatment Effect (ATE), estimating it with regression adjustment methods presents significant challenges. Specifically, precision in the distribution tails suffers due to data imbalance, and computational inefficiencies arise from the need to solve numerous regression problems, particularly in large-scale datasets commonly encountered in industry. To address these limitations, our method leverages multi-task neural networks to estimate conditional outcome distributions while incorporating monotonic shape constraints and multi-threshold label learning to enhance accuracy. To demonstrate the practical effectiveness of our proposed method, we apply our method to both simulated and real-world datasets, including a randomized field experiment aimed at reducing water consumption in the US and a large-scale A/B test from a leading streaming platform in Japan. The experimental results consistently demonstrate superior performance across various datasets, establishing our method as a robust and practical solution for modern causal inference applications requiring a detailed understanding of treatment effect heterogeneity.
Suggested Citation
Tomu Hirata & Undral Byambadalai & Tatsushi Oka & Shota Yasui & Shingo Uto, 2025.
"Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks,"
Papers
2507.07738, arXiv.org.
Handle:
RePEc:arx:papers:2507.07738
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.07738. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.