Efficient and Scalable Estimation of Distributional Treatment Effects with Multi-Task Neural Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Fortin, Nicole & Lemieux, Thomas & Firpo, Sergio, 2011.
"Decomposition Methods in Economics,"
Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 1, pages 1-102,
Elsevier.
- Nicole Fortin & Thomas Lemieux & Sergio Firpo, 2010. "Decomposition Methods in Economics," NBER Working Papers 16045, National Bureau of Economic Research, Inc.
- Sergio Firpo, 2007.
"Efficient Semiparametric Estimation of Quantile Treatment Effects,"
Econometrica, Econometric Society, vol. 75(1), pages 259-276, January.
- Sergio Firpo, 2004. "Efficient Semiparametric Estimation of Quantile Treatment Effects," Econometric Society 2004 North American Summer Meetings 605, Econometric Society.
- Susan Athey & Guido W. Imbens, 2006.
"Identification and Inference in Nonlinear Difference-in-Differences Models,"
Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
- Susan Athey & Guido W. Imbens, 2002. "Identification and Inference in Nonlinear Difference-In-Differences Models," NBER Technical Working Papers 0280, National Bureau of Economic Research, Inc.
- Susan Athey & Guido Imbens, 2003. "Identification and Inference in Nonlinear Difference-in-Differences Models," Levine's Working Paper Archive 506439000000000079, David K. Levine.
- Brantly Callaway & Tong Li, 2019.
"Quantile treatment effects in difference in differences models with panel data,"
Quantitative Economics, Econometric Society, vol. 10(4), pages 1579-1618, November.
- Brantly Callaway & Tong Li, 2017. "Quantile Treatment Effects in Difference in Differences Models with Panel Data," DETU Working Papers 1701, Department of Economics, Temple University.
- Markus Frölich & Blaise Melly, 2013.
"Unconditional Quantile Treatment Effects Under Endogeneity,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 346-357, July.
- Markus Frölich & Blaise Melly, 2007. "Unconditional quantile treatment effects under endogeneity," CeMMAP working papers CWP32/07, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Frölich, Markus & Melly, Blaise, 2008. "Unconditional Quantile Treatment Effects under Endogeneity," IZA Discussion Papers 3288, Institute of Labor Economics (IZA).
- John A. List & Ian Muir & Gregory Sun, 2024.
"Using machine learning for efficient flexible regression adjustment in economic experiments,"
Econometric Reviews, Taylor & Francis Journals, vol. 44(1), pages 2-40, July.
- John List & Ian Muir & Gregory Sun, 2022. "Using Machine Learning for Efficient Flexible Regression Adjustment in Economic Experiments," Natural Field Experiments 00763, The Field Experiments Website.
- John A. List & Ian Muir & Gregory K. Sun, 2022. "Using Machine Learning for Efficient Flexible Regression Adjustment in Economic Experiments," NBER Working Papers 30756, National Bureau of Economic Research, Inc.
- Abadie A., 2002. "Bootstrap Tests for Distributional Treatment Effects in Instrumental Variable Models," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 284-292, March.
- Rothe, Christoph, 2010. "Nonparametric estimation of distributional policy effects," Journal of Econometrics, Elsevier, vol. 155(1), pages 56-70, March.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022.
"Locally Robust Semiparametric Estimation,"
Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers CWP31/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers 31/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2018. "Locally robust semiparametric estimation," CeMMAP working papers CWP30/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2016. "Locally Robust Semiparametric Estimation," Papers 1608.00033, arXiv.org, revised Aug 2020.
- Victor Chernozhukov & Iván Fernández-Val & Blaise Melly & Kaspar Wüthrich, 2020.
"Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(529), pages 123-137, January.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar Wüthrich, 2016. "Generic inference on quantile and quantile effect functions for discrete outcomes," CeMMAP working papers CWP35/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar Wüthrich, 2017. "Generic inference on quantile and quantile effect functions for discrete outcomes," CeMMAP working papers 23/17, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar Wüthrich, 2017. "Generic inference on quantile and quantile effect functions for discrete outcomes," CeMMAP working papers CWP23/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar Wüthrich, 2016. "Generic inference on quantile and quantile effect functions for discrete outcomes," CeMMAP working papers 35/16, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly & Kaspar W thrich, 2016. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Diskussionsschriften dp1607, Universitaet Bern, Departement Volkswirtschaft.
- Chernozhukov, Victor & Fernández-Val, Iván & Melly, Blaise & Wüthrich, Kaspar, 2020. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," University of California at San Diego, Economics Working Paper Series qt5zm6m9rq, Department of Economics, UC San Diego.
- Victor Chernozhukov & Iv'an Fern'andez-Val & Blaise Melly & Kaspar Wuthrich, 2016. "Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes," Papers 1608.05142, arXiv.org, revised Aug 2018.
- Undral Byambadalai & Tomu Hirata & Tatsushi Oka & Shota Yasui, 2025. "On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization," Papers 2506.05945, arXiv.org.
- Victor Chernozhukov & Christian Hansen, 2005. "An IV Model of Quantile Treatment Effects," Econometrica, Econometric Society, vol. 73(1), pages 245-261, January.
- A. Belloni & V. Chernozhukov & I. Fernández‐Val & C. Hansen, 2017.
"Program Evaluation and Causal Inference With High‐Dimensional Data,"
Econometrica, Econometric Society, vol. 85, pages 233-298, January.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fern'andez-Val & Christian Hansen, 2013. "Program Evaluation and Causal Inference with High-Dimensional Data," Papers 1311.2645, arXiv.org, revised Jan 2018.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers 13/16, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2016. "Program evaluation and causal inference with high-dimensional data," CeMMAP working papers CWP13/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Dandan Xu & Michael J. Daniels & Almut G. Winterstein, 2018. "A Bayesian nonparametric approach to causal inference on quantiles," Biometrics, The International Biometric Society, vol. 74(3), pages 986-996, September.
- Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.
- Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Undral Byambadalai & Tomu Hirata & Tatsushi Oka & Shota Yasui, 2025. "Beyond the Average: Distributional Causal Inference under Imperfect Compliance," Papers 2509.15594, arXiv.org, revised Oct 2025.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Undral Byambadalai & Tatsushi Oka & Shota Yasui, 2024. "Estimating Distributional Treatment Effects in Randomized Experiments: Machine Learning for Variance Reduction," Papers 2407.16037, arXiv.org.
- Undral Byambadalai & Tomu Hirata & Tatsushi Oka & Shota Yasui, 2025. "Beyond the Average: Distributional Causal Inference under Imperfect Compliance," Papers 2509.15594, arXiv.org, revised Oct 2025.
- Pedro H. C. Sant'Anna, 2016. "Program Evaluation with Right-Censored Data," Papers 1604.02642, arXiv.org.
- Brantly Callaway & Weige Huang, 2020. "Distributional Effects of a Continuous Treatment with an Application on Intergenerational Mobility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 82(4), pages 808-842, August.
- Undral Byambadalai & Tomu Hirata & Tatsushi Oka & Shota Yasui, 2025. "On Efficient Estimation of Distributional Treatment Effects under Covariate-Adaptive Randomization," Papers 2506.05945, arXiv.org.
- Tatsushi Oka & Shota Yasui & Yuta Hayakawa & Undral Byambadalai, 2024. "Regression Adjustment for Estimating Distributional Treatment Effects in Randomized Controlled Trials," Papers 2407.14074, arXiv.org, revised Jan 2025.
- Callaway, Brantly & Li, Tong & Oka, Tatsushi, 2018. "Quantile treatment effects in difference in differences models under dependence restrictions and with only two time periods," Journal of Econometrics, Elsevier, vol. 206(2), pages 395-413.
- Afrouz Azadikhah Jahromi & Brantly Callaway, 2022.
"Heterogeneous Effects of Job Displacement on Earnings,"
Empirical Economics, Springer, vol. 62(1), pages 213-245, January.
- Afrouz Azadikhah Jahromi & Brantly Callaway, 2019. "Heterogeneous Effects of Job Displacement on Earnings," DETU Working Papers 1901, Department of Economics, Temple University.
- Afrouz Azadikhah Jahromi & Brantly Callaway, 2020. "Heterogeneous Effects of Job Displacement on Earnings," Papers 2006.04968, arXiv.org, revised Sep 2020.
- Zequn Jin & Lihua Lin & Zhengyu Zhang, 2022. "Identification and Auto-debiased Machine Learning for Outcome Conditioned Average Structural Derivatives," Papers 2211.07903, arXiv.org.
- Kaspar Wüthrich, 2020.
"A Comparison of Two Quantile Models With Endogeneity,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
- Kaspar W thrich, 2014. "A Comparison of two Quantile Models with Endogeneity," Diskussionsschriften dp1408, Universitaet Bern, Departement Volkswirtschaft.
- Wüthrich, Kaspar, 2020. "A Comparison of Two Quantile Models With Endogeneity," University of California at San Diego, Economics Working Paper Series qt0q43931f, Department of Economics, UC San Diego.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022.
"Covariate distribution balance via propensity scores,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
- Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2018. "Covariate Distribution Balance via Propensity Scores," Papers 1810.01370, arXiv.org, revised Apr 2020.
- Volpe Martincus, Christian & Carballo, Jerónimo, 2010.
"Beyond the average effects: The distributional impacts of export promotion programs in developing countries,"
Journal of Development Economics, Elsevier, vol. 92(2), pages 201-214, July.
- Volpe Martincus, Christian & Carballo, Jerónimo, 2010. "Beyond The Average Effects: The Distributional Impacts of Export Promotion Programs in Developing Countries," IDB Publications (Working Papers) 3169, Inter-American Development Bank.
- Neng-Chieh Chang, 2020. "The Mode Treatment Effect," Papers 2007.11606, arXiv.org.
- Yang Ning & Sida Peng & Jing Tao, 2020. "Doubly Robust Semiparametric Difference-in-Differences Estimators with High-Dimensional Data," Papers 2009.03151, arXiv.org.
- Christoph Rothe, 2012.
"Partial Distributional Policy Effects,"
Econometrica, Econometric Society, vol. 80(5), pages 2269-2301, September.
- Rothe, Christoph, 2011. "Partial Distributional Policy Effects," IZA Discussion Papers 6076, Institute of Labor Economics (IZA).
- Edouard Pignède, 2025. "Who carries the burden of climate change? Heterogeneous impact of droughts in sub‐Saharan Africa," American Journal of Agricultural Economics, John Wiley & Sons, vol. 107(3), pages 925-957, May.
- Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013.
"Inference on Counterfactual Distributions,"
Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2008. "Inference On Counterfactual Distributions," Boston University - Department of Economics - Working Papers Series wp2008-005, Boston University - Department of Economics.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on Counterfactual Distributions," Papers 0904.0951, arXiv.org, revised Sep 2013.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2012. "Inference on counterfactual distributions," CeMMAP working papers 05/12, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2013. "Inference on counterfactual distributions," CeMMAP working papers 17/13, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2013. "Inference on counterfactual distributions," CeMMAP working papers CWP17/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on counterfactual distributions," CeMMAP working papers CWP09/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2009. "Inference on counterfactual distributions," CeMMAP working papers 09/09, Institute for Fiscal Studies.
- Victor Chernozhukov & Ivan Fernandez-Val & Blaise Melly, 2012. "Inference on counterfactual distributions," CeMMAP working papers CWP05/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Damian Clarke & Manuel Llorca Jaña & Daniel Pailañir, 2023.
"The use of quantile methods in economic history,"
Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 56(2), pages 115-132, April.
- Damian Clarke & Manuel Llorca Ja~na & Daniel Paila~nir, 2021. "The Use of Quantile Methods in Economic History," Papers 2108.06055, arXiv.org.
- Clarke, Damian & Llorca-Jaña, Manuel & Pailañir, Daniel, 2021. "The Use of Quantile Methods in Economic History," IZA Discussion Papers 14659, Institute of Labor Economics (IZA).
- Takuya Ishihara, 2020. "Panel Data Quantile Regression for Treatment Effect Models," Papers 2001.04324, arXiv.org, revised Nov 2021.
- Callaway, Brantly & Sant’Anna, Pedro H.C., 2021.
"Difference-in-Differences with multiple time periods,"
Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
- Brantly Callaway & Pedro H. C. Sant'Anna, 2018. "Difference-in-Differences with Multiple Time Periods," Papers 1803.09015, arXiv.org, revised Dec 2020.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2025-08-25 (Big Data)
- NEP-CMP-2025-08-25 (Computational Economics)
- NEP-ECM-2025-08-25 (Econometrics)
- NEP-EXP-2025-08-25 (Experimental Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2507.07738. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/p/arx/papers/2507.07738.html