IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2509.15594.html
   My bibliography  Save this paper

Beyond the Average: Distributional Causal Inference under Imperfect Compliance

Author

Listed:
  • Undral Byambadalai
  • Tomu Hirata
  • Tatsushi Oka
  • Shota Yasui

Abstract

We study the estimation of distributional treatment effects in randomized experiments with imperfect compliance. When participants do not adhere to their assigned treatments, we leverage treatment assignment as an instrumental variable to identify the local distributional treatment effect-the difference in outcome distributions between treatment and control groups for the subpopulation of compliers. We propose a regression-adjusted estimator based on a distribution regression framework with Neyman-orthogonal moment conditions, enabling robustness and flexibility with high-dimensional covariates. Our approach accommodates continuous, discrete, and mixed discrete-continuous outcomes, and applies under a broad class of covariate-adaptive randomization schemes, including stratified block designs and simple random sampling. We derive the estimator's asymptotic distribution and show that it achieves the semiparametric efficiency bound. Simulation results demonstrate favorable finite-sample performance, and we demonstrate the method's practical relevance in an application to the Oregon Health Insurance Experiment.

Suggested Citation

  • Undral Byambadalai & Tomu Hirata & Tatsushi Oka & Shota Yasui, 2025. "Beyond the Average: Distributional Causal Inference under Imperfect Compliance," Papers 2509.15594, arXiv.org.
  • Handle: RePEc:arx:papers:2509.15594
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2509.15594
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2509.15594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.