IDEAS home Printed from https://ideas.repec.org/a/wly/quante/v15y2024i4p971-998.html
   My bibliography  Save this article

Covariate adjustment in stratified experiments

Author

Listed:
  • Max Cytrynbaum

Abstract

This paper studies covariate adjusted estimation of the average treatment effect in stratified experiments. We work in a general framework that includes matched tuples designs, coarse stratification, and complete randomization as special cases. Regression adjustment with treatment‐covariate interactions is known to weakly improve efficiency for completely randomized designs. By contrast, we show that for stratified designs such regression estimators are generically inefficient, potentially even increasing estimator variance relative to the unadjusted benchmark. Motivated by this result, we derive the asymptotically optimal linear covariate adjustment for a given stratification. We construct several feasible estimators that implement this efficient adjustment in large samples. In the special case of matched pairs, for example, the regression including treatment, covariates, and pair fixed effects is asymptotically optimal. We also provide novel asymptotically exact inference methods that allow researchers to report smaller confidence intervals, fully reflecting the efficiency gains from both stratification and adjustment. Simulations and an empirical application demonstrate the value of our proposed methods.

Suggested Citation

  • Max Cytrynbaum, 2024. "Covariate adjustment in stratified experiments," Quantitative Economics, Econometric Society, vol. 15(4), pages 971-998, November.
  • Handle: RePEc:wly:quante:v:15:y:2024:i:4:p:971-998
    DOI: 10.3982/QE2475
    as

    Download full text from publisher

    File URL: https://doi.org/10.3982/QE2475
    Download Restriction: no

    File URL: https://libkey.io/10.3982/QE2475?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:quante:v:15:y:2024:i:4:p:971-998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/essssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.