IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v108y2021i2p299-319..html
   My bibliography  Save this article

Quasi-oracle estimation of heterogeneous treatment effects
[TensorFlow: A system for large-scale machine learning]

Author

Listed:
  • X Nie
  • S Wager

Abstract

SummaryFlexible estimation of heterogeneous treatment effects lies at the heart of many statistical applications, such as personalized medicine and optimal resource allocation. In this article we develop a general class of two-step algorithms for heterogeneous treatment effect estimation in observational studies. First, we estimate marginal effects and treatment propensities to form an objective function that isolates the causal component of the signal. Then, we optimize this data-adaptive objective function. The proposed approach has several advantages over existing methods. From a practical perspective, our method is flexible and easy to use: in both steps, any loss-minimization method can be employed, such as penalized regression, deep neural networks, or boosting; moreover, these methods can be fine-tuned by cross-validation. Meanwhile, in the case of penalized kernel regression, we show that our method has a quasi-oracle property. Even when the pilot estimates for marginal effects and treatment propensities are not particularly accurate, we achieve the same error bounds as an oracle with prior knowledge of these two nuisance components. We implement variants of our approach based on penalized regression, kernel ridge regression, and boosting in a variety of simulation set-ups, and observe promising performance relative to existing baselines.

Suggested Citation

  • X Nie & S Wager, 2021. "Quasi-oracle estimation of heterogeneous treatment effects [TensorFlow: A system for large-scale machine learning]," Biometrika, Biometrika Trust, vol. 108(2), pages 299-319.
  • Handle: RePEc:oup:biomet:v:108:y:2021:i:2:p:299-319.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asaa076
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:108:y:2021:i:2:p:299-319.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.