IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.14903.html
   My bibliography  Save this paper

Inference in Cluster Randomized Trials with Matched Pairs

Author

Listed:
  • Yuehao Bai
  • Jizhou Liu
  • Azeem M. Shaikh
  • Max Tabord-Meehan

Abstract

This paper studies inference in cluster randomized trials where treatment status is determined according to a "matched pairs" design. Here, by a cluster randomized experiment, we mean one in which treatment is assigned at the level of the cluster; by a "matched pairs" design, we mean that a sample of clusters is paired according to baseline, cluster-level covariates and, within each pair, one cluster is selected at random for treatment. We study the large-sample behavior of a weighted difference-in-means estimator and derive two distinct sets of results depending on if the matching procedure does or does not match on cluster size. We then propose a single variance estimator which is consistent in either regime. Combining these results establishes the asymptotic exactness of tests based on these estimators. Next, we consider the properties of two common testing procedures based on t-tests constructed from linear regressions, and argue that both are generally conservative in our framework. We additionally study the behavior of a randomization test which permutes the treatment status for clusters within pairs, and establish its finite-sample and asymptotic validity for testing specific null hypotheses. Finally, we propose a covariate-adjusted estimator which adjusts for additional baseline covariates not used for treatment assignment, and establish conditions under which such an estimator leads to strict improvements in precision. A simulation study confirms the practical relevance of our theoretical results.

Suggested Citation

  • Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2022. "Inference in Cluster Randomized Trials with Matched Pairs," Papers 2211.14903, arXiv.org, revised Aug 2024.
  • Handle: RePEc:arx:papers:2211.14903
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.14903
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Federico A. Bugni & Ivan A. Canay & Azeem M. Shaikh, 2018. "Inference Under Covariate-Adaptive Randomization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(524), pages 1784-1796, October.
    2. Miriam Bruhn & Luciana de Souza Leão & Arianna Legovini & Rogelio Marchetti & Bilal Zia, 2016. "The Impact of High School Financial Education: Evidence from a Large-Scale Evaluation in Brazil," American Economic Journal: Applied Economics, American Economic Association, vol. 8(4), pages 256-295, October.
    3. Rachel Glennerster & Kudzai Takavarasha, 2013. "Running Randomized Evaluations: A Practical Guide," Economics Books, Princeton University Press, edition 1, number 10085.
    4. Federico Bugni & Ivan A. Canay & Azeem M. Shaikh & Max Tabord-Meehan, 2025. "Inference for Cluster Randomized Experiments with Nonignorable Cluster Sizes," Journal of Political Economy Microeconomics, University of Chicago Press, vol. 3(2), pages 255-288.
    5. Bai, Yuehao & Jiang, Liang & Romano, Joseph P. & Shaikh, Azeem M. & Zhang, Yichong, 2024. "Covariate adjustment in experiments with matched pairs," Journal of Econometrics, Elsevier, vol. 241(1).
    6. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    7. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," American Economic Review, American Economic Association, vol. 112(12), pages 3911-3940, December.
    8. Liang Jiang & Xiaobin Liu & Peter C. B. Phillips & Yichong Zhang, 2024. "Bootstrap Inference for Quantile Treatment Effects in Randomized Experiments with Matched Pairs," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 542-556, March.
    9. Glewwe, Paul & Park, Albert & Zhao, Meng, 2016. "A better vision for development: Eyeglasses and academic performance in rural primary schools in China," Journal of Development Economics, Elsevier, vol. 122(C), pages 170-182.
    10. Fangzhou Su & Peng Ding, 2021. "Model‐assisted analyses of cluster‐randomized experiments," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(5), pages 994-1015, November.
    11. Mauricio Romero & Justin Sandefur & Wayne Aaron Sandholtz, 2020. "Outsourcing Education: Experimental Evidence from Liberia," American Economic Review, American Economic Association, vol. 110(2), pages 364-400, February.
    12. Bruno Crépon & Florencia Devoto & Esther Duflo & William Parienté, 2015. "Estimating the Impact of Microcredit on Those Who Take It Up: Evidence from a Randomized Experiment in Morocco," American Economic Journal: Applied Economics, American Economic Association, vol. 7(1), pages 123-150, January.
    13. Yuehao Bai & Joseph P. Romano & Azeem M. Shaikh, 2022. "Inference in Experiments With Matched Pairs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1726-1737, October.
    14. Miriam Bruhn & David McKenzie, 2009. "In Pursuit of Balance: Randomization in Practice in Development Field Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 200-232, October.
    15. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," Papers 2206.07845, arXiv.org.
    16. Jiang, Liang & Liu, Xiaobin & Zhang, Yichong, 2020. "Bootstrap Inference for Quantile Treatment Effects in Randomized Experiments with Matched Pairs," Economics and Statistics Working Papers 15-2020, Singapore Management University, School of Economics.
    17. Joshua Angrist & Victor Lavy, 2009. "The Effects of High Stakes High School Achievement Awards: Evidence from a Randomized Trial," American Economic Review, American Economic Association, vol. 99(4), pages 1384-1414, September.
    18. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    19. Abhijit Banerjee & Esther Duflo & Rachel Glennerster & Cynthia Kinnan, 2015. "The Miracle of Microfinance? Evidence from a Randomized Evaluation," American Economic Journal: Applied Economics, American Economic Association, vol. 7(1), pages 22-53, January.
    20. Akanksha Negi & Jeffrey M. Wooldridge, 2021. "Revisiting regression adjustment in experiments with heterogeneous treatment effects," Econometric Reviews, Taylor & Francis Journals, vol. 40(5), pages 504-534, April.
    21. Yuehao Bai & Jizhou Liu & Max Tabord‐Meehan, 2024. "Inference for matched tuples and fully blocked factorial designs," Quantitative Economics, Econometric Society, vol. 15(2), pages 279-330, May.
    22. Max Cytrynbaum, 2021. "Optimal Stratification of Survey Experiments," Papers 2111.08157, arXiv.org, revised Aug 2023.
    23. Yuehao Bai & Jizhou Liu & Max Tabord-Meehan, 2022. "Inference for Matched Tuples and Fully Blocked Factorial Designs," Papers 2206.04157, arXiv.org, revised Nov 2023.
    24. Janssen, Arnold, 1997. "Studentized permutation tests for non-i.i.d. hypotheses and the generalized Behrens-Fisher problem," Statistics & Probability Letters, Elsevier, vol. 36(1), pages 9-21, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuehao Bai & Xun Huang & Joseph P. Romano & Azeem M. Shaikh & Max Tabord-Meehan, 2025. "A New Design-Based Variance Estimator for Finely Stratified Experiments," Papers 2503.10851, arXiv.org, revised May 2025.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org, revised Apr 2025.
    2. Yuehao Bai & Meng Hsuan Hsieh & Jizhou Liu & Max Tabord‐Meehan, 2024. "Revisiting the analysis of matched‐pair and stratified experiments in the presence of attrition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(2), pages 256-268, March.
    3. Yuehao Bai & Jizhou Liu & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "On the Efficiency of Finely Stratified Experiments," Papers 2307.15181, arXiv.org, revised Mar 2025.
    4. Yuehao Bai & Jizhou Liu & Max Tabord-Meehan, 2022. "Inference for Matched Tuples and Fully Blocked Factorial Designs," Papers 2206.04157, arXiv.org, revised Nov 2023.
    5. Yuehao Bai & Meng Hsuan Hsieh & Jizhou Liu & Max Tabord-Meehan, 2022. "Revisiting the Analysis of Matched-Pair and Stratified Experiments in the Presence of Attrition," Papers 2209.11840, arXiv.org, revised Oct 2023.
    6. Yuehao Bai & Xun Huang & Joseph P. Romano & Azeem M. Shaikh & Max Tabord-Meehan, 2025. "A New Design-Based Variance Estimator for Finely Stratified Experiments," Papers 2503.10851, arXiv.org, revised May 2025.
    7. Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023. "Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations," Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
    8. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    9. Liang Jiang & Xiaobin Liu & Peter C. B. Phillips & Yichong Zhang, 2024. "Bootstrap Inference for Quantile Treatment Effects in Randomized Experiments with Matched Pairs," The Review of Economics and Statistics, MIT Press, vol. 106(2), pages 542-556, March.
    10. Laurent Davezies & Guillaume Hollard & Pedro Vergara Merino, 2024. "Revisiting Randomization with the Cube Method," Papers 2407.13613, arXiv.org, revised Mar 2025.
    11. Cai, Yong & Rafi, Ahnaf, 2024. "On the performance of the Neyman Allocation with small pilots," Journal of Econometrics, Elsevier, vol. 242(1).
    12. Bai, Yuehao & Jiang, Liang & Romano, Joseph P. & Shaikh, Azeem M. & Zhang, Yichong, 2024. "Covariate adjustment in experiments with matched pairs," Journal of Econometrics, Elsevier, vol. 241(1).
    13. Bugni, Federico A. & Gao, Mengsi, 2023. "Inference under covariate-adaptive randomization with imperfect compliance," Journal of Econometrics, Elsevier, vol. 237(1).
    14. Yuehao Bai, 2022. "Optimality of Matched-Pair Designs in Randomized Controlled Trials," Papers 2206.07845, arXiv.org.
    15. Jizhou Liu, 2023. "Inference for Two-stage Experiments under Covariate-Adaptive Randomization," Papers 2301.09016, arXiv.org, revised Oct 2024.
    16. Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
    17. Zhao, Anqi & Ding, Peng, 2024. "No star is good news: A unified look at rerandomization based on p-values from covariate balance tests," Journal of Econometrics, Elsevier, vol. 241(1).
    18. Yuehao Bai & Joseph P. Romano & Azeem M. Shaikh, 2022. "Inference in Experiments With Matched Pairs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(540), pages 1726-1737, October.
    19. Yichong Zhang & Xin Zheng, 2020. "Quantile treatment effects and bootstrap inference under covariate‐adaptive randomization," Quantitative Economics, Econometric Society, vol. 11(3), pages 957-982, July.
    20. Yuehao Bai & Hongchang Guo & Azeem M. Shaikh & Max Tabord-Meehan, 2023. "Inference in Experiments with Matched Pairs and Imperfect Compliance," Papers 2307.13094, arXiv.org, revised Jun 2024.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.14903. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.