Double machine learning and design in batch adaptive experiments
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Jinyong Hahn & Keisuke Hirano & Dean Karlan, 2011.
"Adaptive Experimental Design Using the Propensity Score,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 96-108, January.
- Hahn, Jinyong & Hirano, Keisuke & Karlan, Dean, 2011. "Adaptive Experimental Design Using the Propensity Score," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(1), pages 96-108.
- Hahn, Jinyong & Hirano, Keisuke & Karlan, Dean, 2008. "Adaptive Experimental Design Using the Propensity Score," MPRA Paper 8315, University Library of Munich, Germany.
- Jinyong Hahn & Keisuke Hirano & Dean Karlan, 2009. "Adaptive Experimental Design Using the Propensity Score," Working Papers 969, Economic Growth Center, Yale University.
- Hahn, Jinyong & Hirano, Keisuke & Karlan, Dean, 2009. "Adaptive Experimental Design Using the Propensity Score," Working Papers 59, Yale University, Department of Economics.
- Hahn, Jinyong & Hirano, Keisuke & Karlan, Dean S., 2009. "Adaptive Experimental Design Using the Propensity Score," Center Discussion Papers 47107, Yale University, Economic Growth Center.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2018.
"Who Should Be Treated? Empirical Welfare Maximization Methods for Treatment Choice,"
Econometrica, Econometric Society, vol. 86(2), pages 591-616, March.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP10/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2017. "Who should be treated? Empirical welfare maximization methods for treatment choice," CeMMAP working papers CWP24/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Toru Kitagawa & Aleksey Tetenov, 2015. "Who should be Treated? Empirical Welfare Maximization Methods for Treatment Choice," Carlo Alberto Notebooks 402, Collegio Carlo Alberto.
- Max Tabord-Meehan, 2023.
"Stratification Trees for Adaptive Randomisation in Randomised Controlled Trials,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(5), pages 2646-2673.
- Max Tabord-Meehan, 2018. "Stratification Trees for Adaptive Randomization in Randomized Controlled Trials," Papers 1806.05127, arXiv.org, revised Jul 2022.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003.
"Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score,"
Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
- Guido Imbens, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometric Society World Congress 2000 Contributed Papers 1166, Econometric Society.
- Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2000. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," NBER Technical Working Papers 0251, National Bureau of Economic Research, Inc.
- Maximilian Kasy & Anja Sautmann, 2021.
"Adaptive Treatment Assignment in Experiments for Policy Choice,"
Econometrica, Econometric Society, vol. 89(1), pages 113-132, January.
- Maximilian Kasy & Anja Sautmann, 2019. "Adaptive Treatment Assignment in Experiments for Policy Choice," CESifo Working Paper Series 7778, CESifo.
- Jinglong Zhao, 2023. "Adaptive Neyman Allocation," Papers 2309.08808, arXiv.org, revised Sep 2023.
- Art B. Owen & Hal Varian, 2018. "Optimizing the tie-breaker regression discontinuity design," Papers 1808.07563, arXiv.org, revised Jul 2020.
- Yanyuan Ma & Jeng-Min Chiou & Naisyin Wang, 2006. "Efficient semiparametric estimator for heteroscedastic partially linear models," Biometrika, Biometrika Trust, vol. 93(1), pages 75-84, March.
- Eric Slud & Ilia Vonta & Abram Kagan, 2018. "Combining estimators of a common parameter across samples," Statistical Theory and Related Fields, Taylor & Francis Journals, vol. 2(2), pages 158-171, July.
- Chamberlain, Gary, 1992. "Efficiency Bounds for Semiparametric Regression," Econometrica, Econometric Society, vol. 60(3), pages 567-596, May.
- Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
- Simon N. Wood, 2003. "Thin plate regression splines," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 95-114, February.
- Simon N. Wood, 2004. "Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 673-686, January.
- Dan M. Kluger & Art B. Owen, 2021. "Kernel regression analysis of tie-breaker designs," Papers 2101.09605, arXiv.org, revised Jan 2023.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org, revised Apr 2025.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Masahiro Kato & Masaaki Imaizumi & Takuya Ishihara & Toru Kitagawa, 2023. "Asymptotically Optimal Fixed-Budget Best Arm Identification with Variance-Dependent Bounds," Papers 2302.02988, arXiv.org, revised Jul 2023.
- Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
- Masahiro Kato, 2021. "Adaptive Doubly Robust Estimator from Non-stationary Logging Policy under a Convergence of Average Probability," Papers 2102.08975, arXiv.org, revised Mar 2021.
- Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
- Max Cytrynbaum, 2021. "Optimal Stratification of Survey Experiments," Papers 2111.08157, arXiv.org, revised Aug 2023.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022.
"Locally Robust Semiparametric Estimation,"
Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers CWP31/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2016. "Locally Robust Semiparametric Estimation," Papers 1608.00033, arXiv.org, revised Aug 2020.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2018. "Locally robust semiparametric estimation," CeMMAP working papers CWP30/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey, 2016. "Locally robust semiparametric estimation," CeMMAP working papers 31/16, Institute for Fiscal Studies.
- Masahiro Kato, 2023. "Locally Optimal Fixed-Budget Best Arm Identification in Two-Armed Gaussian Bandits with Unknown Variances," Papers 2312.12741, arXiv.org, revised Mar 2024.
- Mert Demirer & Vasilis Syrgkanis & Greg Lewis & Victor Chernozhukov, 2019.
"Semi-Parametric Efficient Policy Learning with Continuous Actions,"
CeMMAP working papers
CWP34/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Mert Demirer & Vasilis Syrgkanis & Greg Lewis & Victor Chernozhukov, 2019. "Semi-Parametric Efficient Policy Learning with Continuous Actions," Papers 1905.10116, arXiv.org, revised Jul 2019.
- Masahiro Kato & Akihiro Oga & Wataru Komatsubara & Ryo Inokuchi, 2024. "Active Adaptive Experimental Design for Treatment Effect Estimation with Covariate Choices," Papers 2403.03589, arXiv.org, revised Jun 2024.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Mar 2025.
- Kirill Borusyak & Peter Hull & Xavier Jaravel, 2025.
"Design-based identification with formula instruments: a review,"
The Econometrics Journal, Royal Economic Society, vol. 28(1), pages 83-108.
- Kirill Borusyak & Peter Hull & Xavier Jaravel, 2023. "Design-Based Identification with Formula Instruments: A Review," NBER Working Papers 31393, National Bureau of Economic Research, Inc.
- Kirill Borusyak & Peter Hull & Xavier Jaravel, 2023. "Design-based identification with formula instruments: A review," CeMMAP working papers 12/23, Institute for Fiscal Studies.
- Borusyak, Kirill & Hull, Peter & Jaravel, Xavier, 2024. "Design-based identification with formula instruments: a review," LSE Research Online Documents on Economics 123848, London School of Economics and Political Science, LSE Library.
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP54/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Masahiro Kato & Kenshi Abe & Kaito Ariu & Shota Yasui, 2020. "A Practical Guide of Off-Policy Evaluation for Bandit Problems," Papers 2010.12470, arXiv.org.
- Liang Jiang & Oliver B. Linton & Haihan Tang & Yichong Zhang, 2022.
"Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance,"
Papers
2201.13004, arXiv.org, revised Jun 2023.
- Jian, L. & Linton, O. B. & Tang, H. & Zhang, Y., 2023. "Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance," Janeway Institute Working Papers 2315, Faculty of Economics, University of Cambridge.
- Jian, L. & Linton, O. B. & Tang, H. & Zhang, Y., 2023. "Improving Estimation Efficiency via Regression-Adjustment in Covariate-Adaptive Randomizations with Imperfect Compliance," Cambridge Working Papers in Economics 2366, Faculty of Economics, University of Cambridge.
- Hidehiko Ichimura & Whitney K. Newey, 2022.
"The influence function of semiparametric estimators,"
Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The influence function of semiparametric estimators," CeMMAP working papers 44/15, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The influence function of semiparametric estimators," CeMMAP working papers CWP44/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2015. "The Influence Function of Semiparametric Estimators," CIRJE F-Series CIRJE-F-985, CIRJE, Faculty of Economics, University of Tokyo.
- Hidehiko Ichimura & Whitney K. Newey, 2017. "The influence function of semiparametric estimators," CeMMAP working papers 06/17, Institute for Fiscal Studies.
- Hidehiko Ichimura & Whitney K. Newey, 2017. "The influence function of semiparametric estimators," CeMMAP working papers CWP06/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Jiang, Liang & Phillips, Peter C.B. & Tao, Yubo & Zhang, Yichong, 2023.
"Regression-adjusted estimation of quantile treatment effects under covariate-adaptive randomizations,"
Journal of Econometrics, Elsevier, vol. 234(2), pages 758-776.
- Liang Jiang & Xiaobin Liu & Peter C.B. Phillips & Yichong Zhang, 2021. "Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations," Cowles Foundation Discussion Papers 2288, Cowles Foundation for Research in Economics, Yale University.
- Liang Jiang & Peter C. B. Phillips & Yubo Tao & Yichong Zhang, 2021. "Regression-Adjusted Estimation of Quantile Treatment Effects under Covariate-Adaptive Randomizations," Papers 2105.14752, arXiv.org, revised Sep 2022.
- Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
- Agboola, Oluwagbenga David & Yu, Han, 2023. "Neighborhood-based cross fitting approach to treatment effects with high-dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 186(C).
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2023-10-23 (Computational Economics)
- NEP-ECM-2023-10-23 (Econometrics)
- NEP-EXP-2023-10-23 (Experimental Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2309.15297. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.