IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2310.14983.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this paper

Causal clustering: design of cluster experiments under network interference

Author

Listed:
  • Davide Viviano
  • Lihua Lei
  • Guido Imbens
  • Brian Karrer
  • Okke Schrijvers
  • Liang Shi

Abstract

This paper studies the design of cluster experiments to estimate the global treatment effect in the presence of network spillovers. We provide a framework to choose the clustering that minimizes the worst-case mean-squared error of the estimated global effect. We show that optimal clustering solves a novel penalized min-cut optimization problem computed via off-the-shelf semi-definite programming algorithms. Our analysis also characterizes simple conditions to choose between any two cluster designs, including choosing between a cluster or individual-level randomization. We illustrate the method's properties using unique network data from the universe of Facebook's users and existing data from a field experiment.

Suggested Citation

  • Davide Viviano & Lihua Lei & Guido Imbens & Brian Karrer & Okke Schrijvers & Liang Shi, 2023. "Causal clustering: design of cluster experiments under network interference," Papers 2310.14983, arXiv.org, revised Jan 2024.
  • Handle: RePEc:arx:papers:2310.14983
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2310.14983
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Eckles Dean & Karrer Brian & Ugander Johan, 2017. "Design and Analysis of Experiments in Networks: Reducing Bias from Interference," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-23, March.
    2. Paul Goldsmith-Pinkham & Guido W. Imbens, 2013. "Social Networks and the Identification of Peer Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(3), pages 253-264, July.
    3. Alberto Abadie & Susan Athey & Guido W Imbens & Jeffrey M Wooldridge, 2023. "When Should You Adjust Standard Errors for Clustering?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 138(1), pages 1-35.
    4. Betsy Sinclair & Margaret McConnell & Donald P. Green, 2012. "Detecting Spillover Effects: Design and Analysis of Multilevel Experiments," American Journal of Political Science, John Wiley & Sons, vol. 56(4), pages 1055-1069, October.
    5. Vivi Alatas & Abhijit Banerjee & Rema Hanna & Benjamin A. Olken & Julia Tobias, 2012. "Targeting the Poor: Evidence from a Field Experiment in Indonesia," American Economic Review, American Economic Association, vol. 102(4), pages 1206-1240, June.
    6. Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2009. "Identification of peer effects through social networks," Journal of Econometrics, Elsevier, vol. 150(1), pages 41-55, May.
    7. à ureo de Paula & Seth Richards†Shubik & Elie Tamer, 2018. "Identifying Preferences in Networks With Bounded Degree," Econometrica, Econometric Society, vol. 86(1), pages 263-288, January.
    8. Toru Kitagawa & Guanyi Wang, 2021. "Who should get vaccinated? Individualized allocation of vaccines over SIR network," CeMMAP working papers CWP28/21, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    9. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    10. Jing Cai & Alain De Janvry & Elisabeth Sadoulet, 2015. "Social Networks and the Decision to Insure," American Economic Journal: Applied Economics, American Economic Association, vol. 7(2), pages 81-108, April.
    11. Keisuke Hirano & Jack R. Porter, 2009. "Asymptotics for Statistical Treatment Rules," Econometrica, Econometric Society, vol. 77(5), pages 1683-1701, September.
    12. Jeffrey M. Wooldridge, 2003. "Cluster-Sample Methods in Applied Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 133-138, May.
    13. Toru Kitagawa & Guanyi Wang, 2020. "Who Should Get Vaccinated? Individualized Allocation of Vaccines Over SIR Network," Papers 2012.04055, arXiv.org, revised Jul 2021.
    14. Tianxi Li & Lihua Lei & Sharmodeep Bhattacharyya & Koen Van den Berge & Purnamrita Sarkar & Peter J. Bickel & Elizaveta Levina, 2022. "Hierarchical Community Detection by Recursive Partitioning," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(538), pages 951-968, April.
    15. Dennis Egger & Johannes Haushofer & Edward Miguel & Paul Niehaus & Michael Walker, 2022. "General Equilibrium Effects of Cash Transfers: Experimental Evidence From Kenya," Econometrica, Econometric Society, vol. 90(6), pages 2603-2643, November.
    16. Sarah Baird & J. Aislinn Bohren & Craig McIntosh & Berk Özler, 2018. "Optimal Design of Experiments in the Presence of Interference," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 844-860, December.
    17. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    18. Eckles Dean & Karrer Brian & Ugander Johan, 2017. "Design and Analysis of Experiments in Networks: Reducing Bias from Interference," Journal of Causal Inference, De Gruyter, vol. 5(1), pages 1-23, March.
    19. Michael P. Leung, 2023. "Network Cluster‐Robust Inference," Econometrica, Econometric Society, vol. 91(2), pages 641-667, March.
    20. Karthik Muralidharan & Paul Niehaus, 2017. "Experimentation at Scale," Journal of Economic Perspectives, American Economic Association, vol. 31(4), pages 103-124, Fall.
    21. Michael P. Leung, 2020. "Treatment and Spillover Effects Under Network Interference," The Review of Economics and Statistics, MIT Press, vol. 102(2), pages 368-380, May.
    22. Emily Breza & Arun G. Chandrasekhar & Tyler H. McCormick & Mengjie Pan, 2020. "Using Aggregated Relational Data to Feasibly Identify Network Structure without Network Data," American Economic Review, American Economic Association, vol. 110(8), pages 2454-2484, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luofeng Liao & Christian Kroer & Sergei Leonenkov & Okke Schrijvers & Liang Shi & Nicolas Stier-Moses & Congshan Zhang, 2024. "Interference Among First-Price Pacing Equilibria: A Bias and Variance Analysis," Papers 2402.07322, arXiv.org.
    2. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide Viviano & Jess Rudder, 2020. "Policy design in experiments with unknown interference," Papers 2011.08174, arXiv.org, revised May 2024.
    2. Davide Viviano, 2020. "Experimental Design under Network Interference," Papers 2003.08421, arXiv.org, revised Jul 2022.
    3. Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
    4. Eric Auerbach & Max Tabord-Meehan, 2021. "The Local Approach to Causal Inference under Network Interference," Papers 2105.03810, arXiv.org, revised Jun 2023.
    5. Yuchen Hu & Shuangning Li & Stefan Wager, 2021. "Average Direct and Indirect Causal Effects under Interference," Papers 2104.03802, arXiv.org, revised Jan 2022.
    6. Supriya Tiwari & Pallavi Basu, 2024. "Quasi-randomization tests for network interference," Papers 2403.16673, arXiv.org.
    7. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    8. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
    9. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    10. Alejandro Sanchez-Becerra, 2022. "The Network Propensity Score: Spillovers, Homophily, and Selection into Treatment," Papers 2209.14391, arXiv.org.
    11. Ruoxuan Xiong & Alex Chin & Sean J. Taylor, 2024. "Data-Driven Switchback Experiments: Theoretical Tradeoffs and Empirical Bayes Designs," Papers 2406.06768, arXiv.org.
    12. Christopher Harshaw & Fredrik Savje & Yitan Wang, 2022. "A Design-Based Riesz Representation Framework for Randomized Experiments," Papers 2210.08698, arXiv.org, revised Oct 2022.
    13. Julius Owusu, 2023. "Randomization Inference of Heterogeneous Treatment Effects under Network Interference," Papers 2308.00202, arXiv.org, revised Jan 2024.
    14. Michael P. Leung, 2021. "Rate-Optimal Cluster-Randomized Designs for Spatial Interference," Papers 2111.04219, arXiv.org, revised Sep 2022.
    15. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    16. Braun, Martin & Verdier, Valentin, 2023. "Estimation of spillover effects with matched data or longitudinal network data," Journal of Econometrics, Elsevier, vol. 233(2), pages 689-714.
    17. Vazquez-Bare, Gonzalo, 2023. "Identification and estimation of spillover effects in randomized experiments," Journal of Econometrics, Elsevier, vol. 237(1).
    18. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    19. Michael P. Leung & Hyungsik Roger Moon, 2019. "Normal Approximation in Large Network Models," Papers 1904.11060, arXiv.org, revised Feb 2023.
    20. Gonzalo Vazquez-Bare, 2020. "Causal Spillover Effects Using Instrumental Variables," Papers 2003.06023, arXiv.org, revised Dec 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2310.14983. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.