IDEAS home Printed from https://ideas.repec.org/p/apu/wpaper/2012-01.html
   My bibliography  Save this paper

Effect of soil heterogeneity on the welfare economics of biofuel policies

Author

Listed:
  • Vincent Martinet

Abstract

Biofuel policies (blend mandate or tax credit) have impacts on food and energy prices, and on land-use. The magnitude of these effects depends on the market response to price, and thus on the agricultural supply curve, which, in turn, depends on the land availability (quantity and agronomic quality). To understand these relationships, we develop a theoretical framework with an explicit representation of land heterogeneity. The elasticity of the supply curve is shown to be non-constant, depending on land heterogeneity and the availability of land for agricultural expansion. This influences the welfare economics of biofuels policies, and the possible carbon leakage in land and fuel markets. We emphasize that the impacts of biofuel policies on welfare and land-use change depend strongly on the potential development of the agricultural sector in terms of expansion and intensification, and not only on its current size.

Suggested Citation

  • Vincent Martinet, 2012. "Effect of soil heterogeneity on the welfare economics of biofuel policies," Working Papers 2012/01, INRA, Economie Publique.
  • Handle: RePEc:apu:wpaper:2012/01
    as

    Download full text from publisher

    File URL: https://www6.versailles-grignon.inra.fr/economie_publique/Media/fichiers/Working-Papers/Working-Papers-2012/Effect-of-soil-heterogeneity
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    2. Jussi Lankoski & Erik Lichtenberg & Markku Ollikainen, 2010. "Agri-Environmental Program Compliance in a Heterogeneous Landscape," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 47(1), pages 1-22, September.
    3. Lapan, Harvey & Moschini, GianCarlo, 2012. "Second-best biofuel policies and the welfare effects of quantity mandates and subsidies," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 224-241.
    4. Llewelyn, Richard V. & Featherstone, Allen M., 1997. "A comparison of crop production functions using simulated data for irrigated corn in western Kansas," Agricultural Systems, Elsevier, vol. 54(4), pages 521-538, August.
    5. Hongli Feng & Bruce A. Babcock, 2010. "Impacts of Ethanol on Planted Acreage in Market Equilibrium," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(3), pages 789-802.
    6. Kretschmer, Bettina & Narita, Daiju & Peterson, Sonja, 2009. "The economic effects of the EU biofuel target," Open Access Publications from Kiel Institute for the World Economy 32984, Kiel Institute for the World Economy (IfW).
    7. Harry de Gorter & David R. Just, 2008. "The Economics of a Blend Mandate for Biofuels," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(3), pages 738-750.
    8. Kretschmer, Bettina & Peterson, Sonja, 2010. "Integrating bioenergy into computable general equilibrium models -- A survey," Energy Economics, Elsevier, vol. 32(3), pages 673-686, May.
    9. Roman Keeney & Thomas W. Hertel, 2009. "The Indirect Land Use Impacts of United States Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(4), pages 895-909.
    10. Antle, John & Capalbo, Susan & Mooney, Sian & Elliott, Edward & Paustian, Keith, 2003. "Spatial heterogeneity, contract design, and the efficiency of carbon sequestration policies for agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 231-250, September.
    11. Craig Bond & Y. Farzin, 2008. "Alternative Sustainability Criteria, Externalities, and Welfare in a Simple Agroecosystem Model: A Numerical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(3), pages 383-399, July.
    12. Rob Fraser, 2009. "Land Heterogeneity, Agricultural Income Forgone and Environmental Benefit: An Assessment of Incentive Compatibility Problems in Environmental Stewardship Schemes," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 190-201.
    13. Carlos Arnade & David Kelch, 2007. "Estimation of Area Elasticities from a Standard Profit Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(3), pages 727-737.
    14. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    15. Martin Banse & Hans van Meijl & Andrzej Tabeau & Geert Woltjer, 2008. "Will EU biofuel policies affect global agricultural markets?," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 35(2), pages 117-141, June.
    16. Jeffrey T. LaFrance & Rulon D. Pope, 2008. "Homogeneity and Supply," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(3), pages 606-612.
    17. Ian W. Hardie & Peter J. Parks, 1997. "Land Use with Heterogeneous Land Quality: An Application of an Area Base Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(2), pages 299-310.
    18. Lankoski, Jussi & Ollikainen, Markku, 2011. "Biofuel policies and the environment: Do climate benefits warrant increased production from biofuel feedstocks?," Ecological Economics, Elsevier, vol. 70(4), pages 676-687, February.
    19. Jussi Lankoski & Markku Ollikainen, 2008. "Bioenergy crop production and climate policies: a von Thunen model and the case of reed canary grass in Finland," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 35(4), pages 519-546, December.
    20. David A. Hennessy, 2009. "Crop Yield Skewness Under Law of the Minimum Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 197-208.
    21. Keeney, Roman & Hertel, Thomas, 2008. "The Indirect Land Use Impacts of U.S. Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," GTAP Working Papers 2810, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    22. Jeffrey T. LaFrance & Rulon D. Pope, 2008. "Homogeneity and Supply," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(3), pages 606-612.
    23. Charles, Michael B. & Ryan, Rachel & Ryan, Neal & Oloruntoba, Richard, 2007. "Public policy and biofuels: The way forward?," Energy Policy, Elsevier, vol. 35(11), pages 5737-5746, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. P. Mathiou & Stelios Rozakis & Rafal Pudelko & A. Faber & A. Petsakos, 2014. "Utility maximising supply response: the case of perennial biomass plantations in Poland," Working Papers 2014-3, Agricultural University of Athens, Department Of Agricultural Economics.
    2. Feichtinger, Paul & Salhofer, Klaus, 2013. "The Influence of the Common Agricultural Policy and Heterogeneous Land Quality on Land Rent and Land Allocation," Working Papers 146963, Factor Markets, Centre for European Policy Studies.

    More about this item

    Keywords

    Agricultural and energy market; Biofuels; Land use; Soil heterogeneity; Welfare;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:apu:wpaper:2012/01. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Régis Grateau). General contact details of provider: http://edirc.repec.org/data/epinrfr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.