IDEAS home Printed from https://ideas.repec.org/p/apu/wpaper/2010-05.html
   My bibliography  Save this paper

Soil heterogeneity, agricultural supply and land-use change: an application to biofuels production

Author

Listed:
  • Vincent Martinet

Abstract

Biofuels policies (blend mandate or tax credit) have impacts on food and energy prices, and on land-use. The magnitude of these effects depends on the market response to price, and thus on the agricultural supply curve, which, in turn, depends on the land availability (quantity and agronomic quality). To understand these relationship beyond marginal analysis, we develop a theoretical framework with an explicit representation of land heterogeneity. The elasticity of supply curve is shown to be non-constant. This influences the welfare economics of biofuel policies. This is due to the availability of new land of marginal quality. Biofuels policies have different impacts in different countries, depending on both their global land endowment and the position of the equilibrium on the non linear agricultural supply curve. Knowing this heterogeneity helps to refine welfare analysis.

Suggested Citation

  • Vincent Martinet, 2010. "Soil heterogeneity, agricultural supply and land-use change: an application to biofuels production," Working Papers 2010/05, INRA, Economie Publique.
  • Handle: RePEc:apu:wpaper:2010/05
    as

    Download full text from publisher

    File URL: https://www6.versailles-grignon.inra.fr/economie_publique/Media/fichiers/Working-Papers/Working-Papers-2010/WP_2010_05
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Llewelyn, Richard V. & Featherstone, Allen M., 1997. "A comparison of crop production functions using simulated data for irrigated corn in western Kansas," Agricultural Systems, Elsevier, vol. 54(4), pages 521-538, August.
    2. Hongli Feng & Bruce A. Babcock, 2010. "Impacts of Ethanol on Planted Acreage in Market Equilibrium," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(3), pages 789-802.
    3. Roman Keeney & Thomas W. Hertel, 2009. "The Indirect Land Use Impacts of United States Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(4), pages 895-909.
    4. Dietrich Vollrath, 2007. "Land Distribution and International Agricultural Productivity," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(1), pages 202-216.
    5. Craig Bond & Y. Farzin, 2008. "Alternative Sustainability Criteria, Externalities, and Welfare in a Simple Agroecosystem Model: A Numerical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(3), pages 383-399, July.
    6. Rob Fraser, 2009. "Land Heterogeneity, Agricultural Income Forgone and Environmental Benefit: An Assessment of Incentive Compatibility Problems in Environmental Stewardship Schemes," Journal of Agricultural Economics, Wiley Blackwell, vol. 60(1), pages 190-201, February.
    7. David A. Hennessy, 2009. "Crop Yield Skewness Under Law of the Minimum Technology," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(1), pages 197-208.
    8. Donaldson, A. B. & Flichman, G. & Webster, J. P. G., 1995. "Integrating agronomic and economic models for policy analysis at the farm level: The impact of CAP reform in two European regions," Agricultural Systems, Elsevier, vol. 48(2), pages 163-178.
    9. Antle, John & Capalbo, Susan & Mooney, Sian & Elliott, Edward & Paustian, Keith, 2003. "Spatial heterogeneity, contract design, and the efficiency of carbon sequestration policies for agriculture," Journal of Environmental Economics and Management, Elsevier, vol. 46(2), pages 231-250, September.
    10. Jeffrey T. LaFrance & Rulon D. Pope, 2008. "Homogeneity and Supply," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(3), pages 606-612.
    11. Ian W. Hardie & Peter J. Parks, 1997. "Land Use with Heterogeneous Land Quality: An Application of an Area Base Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 79(2), pages 299-310.
    12. Keeney, Roman & Hertel, Thomas, 2008. "The Indirect Land Use Impacts of U.S. Biofuel Policies: The Importance of Acreage, Yield, and Bilateral Trade Responses," GTAP Working Papers 2810, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
    13. Carlos Arnade & David Kelch, 2007. "Estimation of Area Elasticities from a Standard Profit Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(3), pages 727-737.
    14. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    15. Antoine BOUËT & HUGO VALIN & Betina DIMARANAN, 2009. "Biofuels in the world markets: A Computable General Equilibrium assessment of environmental costs related to land use changes," Working Papers 6, CATT - UPPA - Université de Pau et des Pays de l'Adour, revised Nov 2009.
    16. JunJie Wu & Kathleen Segerson, 1995. "The Impact of Policies and Land Characteristics on Potential Groundwater Pollution in Wisconsin," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(4), pages 1033-1047.
    17. Stavins, Robert N & Jaffe, Adam B, 1990. "Unintended Impacts of Public Investments on Private Decisions: The Depletion of Forested Wetlands," American Economic Review, American Economic Association, vol. 80(3), pages 337-352, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vincent Martinet, 2012. "Effect of soil heterogeneity on the welfare economics of biofuel policies," Working Papers 2012/01, INRA, Economie Publique.
    2. Martinet, Vincent, 2014. "The economics of the Food versus Biodiversity debate," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182800, European Association of Agricultural Economists.
    3. Saraly Andrade de Sá & Charles Palmer & Stefanie Engel, 2012. "Ethanol Production, Food and Forests," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(1), pages 1-21, January.
    4. Gouel, Christophe & Laborde, David, 2021. "The crucial role of domestic and international market-mediated adaptation to climate change," Journal of Environmental Economics and Management, Elsevier, vol. 106(C).
    5. Baker, Justin Scott & Murray, Brian C. & McCarl, Bruce A., 2011. "Biofuels, Climate Policy, And Water Management: Assessing Policy-Induced Shifts On Agriculture’S Extensive And Intensive Margins," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 104912, Agricultural and Applied Economics Association.
    6. Marion Dupoux, 2016. "The land use change time-accounting failure," EconomiX Working Papers 2016-28, University of Paris Nanterre, EconomiX.
    7. Hongli Feng & Bruce A. Babcock, 2010. "Impacts of Ethanol on Planted Acreage in Market Equilibrium," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(3), pages 789-802.
    8. Stephen Polasky & Erik Nelson & Derric Pennington & Kris Johnson, 2011. "The Impact of Land-Use Change on Ecosystem Services, Biodiversity and Returns to Landowners: A Case Study in the State of Minnesota," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 48(2), pages 219-242, February.
    9. Dupoux, Marion, 2019. "The land use change time-accounting failure," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    10. Lubowski, Ruben N. & Bucholtz, Shawn & Claassen, Roger & Roberts, Michael J. & Cooper, Joseph C. & Gueorguieva, Anna & Johansson, Robert C., 2006. "Environmental Effects Of Agricultural Land-Use Change: The Role Of Economics And Policy," Economic Research Report 33591, United States Department of Agriculture, Economic Research Service.
    11. Thompson, Wyatt & Meyer, Seth D. & Westhoff, Patrick C., 2010. "Us Biofuel And Climate Policies Duel Over Cellulosic Biomass," 2010: Climate Change in World Agriculture: Mitigation, Adaptation, Trade and Food Security, June 2010, Stuttgart-Hohenheim, Germany 91404, International Agricultural Trade Research Consortium.
    12. Lungarska, Anna & Chakir, Raja, 2018. "Climate-induced Land Use Change in France: Impacts of Agricultural Adaptation and Climate Change Mitigation," Ecological Economics, Elsevier, vol. 147(C), pages 134-154.
    13. Moschini, GianCarlo & Cui, Jingbo & Lapan, Harvey E., 2012. "Economics of Biofuels: An Overview of Policies, Impacts and Prospects," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 1(3), pages 1-28, December.
    14. Marion Dupoux, 2016. "The land use change time-accounting failure," Working Papers hal-04141581, HAL.
    15. Bento, Antonio M. & Klotz, Richard & Landry, Joel R., 2011. "Are there Carbon Savings from US Biofuel Policies? Accounting for Leakage in Land and Fuel Markets," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 104008, Agricultural and Applied Economics Association.
    16. Sandler, Austin M. & Rashford, Benjamin S., 2018. "Misclassification error in satellite imagery data: Implications for empirical land-use models," Land Use Policy, Elsevier, vol. 75(C), pages 530-537.
    17. Lee, Juhee & Cho, Seong-Hoon & Kim, Taeyoung & Yu, Tun-Hsiang & Armsworth, Paul Robert, 2015. "Exploring tax-based payment approach for forest carbon sequestration," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196873, Southern Agricultural Economics Association.
    18. Thierry Brunelle & Patrice Dumas, 2012. "Can Numerical Models Estimate Indirect Land-use Change?," Working Papers 2012.65, Fondazione Eni Enrico Mattei.
    19. Marion Dupoux, 2016. "The land use change time-accounting failure," Working Papers 2016/02, INRA, Economie Publique.
    20. Marion Dupoux, 2016. "The land use change time-accounting failure," Policy Papers 2016.07, FAERE - French Association of Environmental and Resource Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:apu:wpaper:2010/05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Régis Grateau (email available below). General contact details of provider: https://edirc.repec.org/data/epinrfr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.