IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v143y2017i3d10.1007_s10584-017-2013-1.html
   My bibliography  Save this article

Agricultural productivity in Latin America and the Caribbean in the presence of unobserved heterogeneity and climatic effects

Author

Listed:
  • Michee Arnold Lachaud

    (Florida A&M University, Agribusiness Program, College of Agriculture and Food Sciences)

  • Boris E. Bravo-Ureta

    (University of Connecticut
    University of Talca)

  • Carlos E. Ludena

Abstract

Total factor productivity (TFP) analysis has been the focus of a large number of methodological and empirical studies over the past several decades. One remarkable gap in this literature is the omission of climatic variables as regressors in the models used to derive TFP measures. The purpose of this paper is to narrow this gap by developing climate-adjusted (CA) TFP measures. We combine information from the Climatic Research Unit with Food and Agriculture Organization data for 28 Latin American and Caribbean countries over a 52-year period (1961–2012) to estimate random parameter stochastic production frontier (SPF) models. The goal is to investigate the impact of climatic variability on TFP. The estimated coefficients from the SPF models are used to construct a climatic effects index across countries and over time. The average annual variation in climatic conditions is stronger at the end of the 2000s compared to earlier periods. Climatic variability has a negative effect on production in 20 of the 28 LAC countries analyzed, and this is more severe over Central America and the Caribbean. The average reduction in output across the region attributable to climatic variables is between 0.02 and 22.7% over the last decade compared to the period 1961–1999. The estimated average annual growth rate of CATFP (0.69%) is consistently lower than TFP (1.08%), confirming the adverse impact of climatic variability on agricultural output and productivity in LAC. The results show considerable variability across countries, and this points to the importance of accounting for climatic effects in analyzing TFP.

Suggested Citation

  • Michee Arnold Lachaud & Boris E. Bravo-Ureta & Carlos E. Ludena, 2017. "Agricultural productivity in Latin America and the Caribbean in the presence of unobserved heterogeneity and climatic effects," Climatic Change, Springer, vol. 143(3), pages 445-460, August.
  • Handle: RePEc:spr:climat:v:143:y:2017:i:3:d:10.1007_s10584-017-2013-1
    DOI: 10.1007/s10584-017-2013-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2013-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2013-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mullen, John D., 2007. "Productivity Growth and the Returns from Public Investment in R&D in Australian Broadacre Agriculture," 2007 Conference (51st), February 13-16, 2007, Queenstown, New Zealand 9451, Australian Agricultural and Resource Economics Society.
    2. Benjamin F. Jones & Benjamin A. Olken, 2010. "Climate Shocks and Exports," American Economic Review, American Economic Association, vol. 100(2), pages 454-459, May.
    3. Mullen, John D., 2007. "Productivity growth and the returns from public investment in R&D in Australian broadacre agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(4), pages 1-26.
    4. Nin Pratt, Alejandro & Falconi, César & Ludeña, Carlos E. & Martel, Pedro, 2015. "Productivity and the Performance of Agriculture in Latin America and the Caribbean: From the Lost Decade to the Commodity Boom," IDB Publications (Working Papers) 7306, Inter-American Development Bank.
    5. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    6. Richard Tol, 2013. "The economic impact of climate change in the 20th and 21st centuries," Climatic Change, Springer, vol. 117(4), pages 795-808, April.
    7. Mukherjee, Deep & Bravo-Ureta, Boris E. & De Vries, Albert, 2013. "Dairy productivity and climatic conditions: econometric evidence from South-eastern united States," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(1), pages 1-18.
    8. Leslie Lipper & Philip Thornton & Bruce M. Campbell & Tobias Baedeker & Ademola Braimoh & Martin Bwalya & Patrick Caron & Andrea Cattaneo & Dennis Garrity & Kevin Henry & Ryan Hottle & Louise Jackson , 2014. "Climate-smart agriculture for food security," Nature Climate Change, Nature, vol. 4(12), pages 1068-1072, December.
    9. Peter F. Craigmile & Peter Guttorp, 2011. "Space‐time modelling of trends in temperature series," Journal of Time Series Analysis, Wiley Blackwell, vol. 32, pages 378-395, July.
    10. Kumar, Shalander & Raju, B.M.K. & Rao, C.A. Rama & Kareemulla, K. & Venkateswarlu, B., 2011. "Sensitivity of Yields of Major Rainfed Crops to Climate in India," Indian Journal of Agricultural Economics, Indian Society of Agricultural Economics, vol. 66(3), pages 1-13.
    11. Calzadilla, Alvaro & Zhu, Tingju & Rehdanz, Katrin & Tol, Richard S.J. & Ringler, Claudia, 2013. "Economywide impacts of climate change on agriculture in Sub-Saharan Africa," Ecological Economics, Elsevier, vol. 93(C), pages 150-165.
    12. Xavier Villavicencio & Bruce McCarl & Ximing Wu & Wallace Huffman, 2013. "Climate change influences on agricultural research productivity," Climatic Change, Springer, vol. 119(3), pages 815-824, August.
    13. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    14. Bharati, Preeti & Fulginiti, Lilyan, 2007. "Institutions and Agricultural Productivity in Mercosur," MPRA Paper 9669, University Library of Munich, Germany.
    15. Salvador Barrios & Luisito Bertinelli & Eric Strobl, 2010. "Trends in Rainfall and Economic Growth in Africa: A Neglected Cause of the African Growth Tragedy," The Review of Economics and Statistics, MIT Press, vol. 92(2), pages 350-366, May.
    16. Hughes, Neal & Lawson, Kenton & Davidson, Alistair & Jackson, Tom & Sheng, Yu, 2011. "Productivity pathways: climate-adjusted production frontiers for the Australian broadacre cropping industry," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100563, Australian Agricultural and Resource Economics Society.
    17. Robert Mendelsohn & Ariel Dinar, 2003. "Climate, Water, and Agriculture," Land Economics, University of Wisconsin Press, vol. 79(3), pages 328-341.
    18. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    19. Nin-Prat, Alejandro & Falconi, Cesar & Ludena, Carlos & Martel, Pedro, 2015. "Productivity and the Performance of Agriculture in Latin America and the Caribbean: From the Lost Decade to the Commodity Boom," 2015 Conference, August 9-14, 2015, Milan, Italy 211725, International Association of Agricultural Economists.
    20. Sansi Yang & C. Richard Shumway, 2014. "Dynamic Adjustment in U.S. Agriculture under Climate Uncertainty," 2014 Papers pya413, Job Market Papers.
    21. Sansi Yang & C. Richard Shumway, 2016. "Dynamic Adjustment in US Agriculture under Climate Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(3), pages 910-924.
    22. John Mullen, 2007. "Productivity growth and the returns from public investment in R&D in Australian broadacre agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 51(4), pages 359-384, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali M. Oumer & Michael Burton & Atakelty Hailu & Amin Mugera, 2020. "Sustainable agricultural intensification practices and cost efficiency in smallholder maize farms: Evidence from Ethiopia," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 841-856, November.
    2. Sun Ling Wang & Nicholas Rada & Ryan Williams & Doris Newton, 2022. "Accounting for climatic effects in measuring U.S. field crop farm productivity," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 44(4), pages 1975-1994, December.
    3. Njuki, Eric, 2021. "Nonlinear weather and climate-induced effects on hired farm labor wages: Evidence from the U.S. Cornbelt," 2021 Annual Meeting, August 1-3, Austin, Texas 313959, Agricultural and Applied Economics Association.
    4. Baráth, Lajos & Fertő, Imre & Hockmann, Heinrich, 2020. "Technological differences, theoretical consistency, and technical efficiency: The case of Hungarian crop-producing farms," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(3), pages 1-17.
    5. Boris E. Bravo‐Ureta & Víctor H. Moreira & Javier L. Troncoso & Alan Wall, 2020. "Plot‐level technical efficiency accounting for farm‐level effects: Evidence from Chilean wine grape producers," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 811-824, November.
    6. Michée A. Lachaud & Boris E. Bravo‐Ureta & Carlos E. Ludena, 2022. "Economic effects of climate change on agricultural production and productivity in Latin America and the Caribbean (LAC)," Agricultural Economics, International Association of Agricultural Economists, vol. 53(2), pages 321-332, March.
    7. Eric Njuki & Boris E. Bravo-Ureta & Christopher J. O’Donnell, 2019. "Decomposing agricultural productivity growth using a random-parameters stochastic production frontier," Empirical Economics, Springer, vol. 57(3), pages 839-860, September.
    8. Ioannis Skevas, 2023. "A novel modeling framework for quantifying spatial spillovers on total factor productivity growth and its components," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(4), pages 1221-1247, August.
    9. Michée A. Lachaud & Boris E. Bravo‐Ureta, 2021. "Agricultural productivity growth in Latin America and the Caribbean: an analysis of climatic effects, catch‐up and convergence," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(1), pages 143-170, January.
    10. Bravo-Ureta, Boris E. & Njuki, Eric & Palacios, Ana Claudia & Salazar, Lina, 2022. "Agricultural Productivity in El Salvador: A Preliminary Analysis," IDB Publications (Working Papers) 11984, Inter-American Development Bank.
    11. Lajos Baráth & Imre Fertő & Štefan Bojnec, 2020. "The Effect of Investment, LFA and Agri‐environmental Subsidies on the Components of Total Factor Productivity: The Case of Slovenian Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 853-876, September.
    12. Julien, Jacques C. & Bravo-Ureta, Boris E. & Rada, Nicholas E., 2023. "Gender and agricultural Productivity: Econometric evidence from Malawi, Tanzania, and Uganda," World Development, Elsevier, vol. 171(C).
    13. Maristela M. Martins & Humberto F. S. Spolador & Eric Njuki, 2022. "Production environment and managerial techniques in explaining productivity growth in Brazilian beef cattle production," Agribusiness, John Wiley & Sons, Ltd., vol. 38(2), pages 371-385, April.
    14. Lachaud, Michee & Bravo-Ureta, Boris & Ludena, Carlos, 2015. "Agricultural Productivity Growth in Latin America and the Caribbean (LAC): An analysis of Climatic Effects, Convergence, and Catch-up," 2015 Conference, August 9-14, 2015, Milan, Italy 211721, International Association of Agricultural Economists.
    15. García-Suarez, Federico, 2021. "Productivity and Efficiency in Uruguay: A Stochastic Approach," 2021 Conference, August 17-31, 2021, Virtual 313805, International Association of Agricultural Economists.
    16. Adjin, K. Christophe & Henning, Christian H. C. A., 2020. "Climate variability and farm inefficiency: A spatial stochastic frontier analysis of Senegalese agriculture," Working Papers of Agricultural Policy WP2020-09, University of Kiel, Department of Agricultural Economics, Chair of Agricultural Policy.
    17. Asif Reza Anik & Sanzidur Rahman & Jaba Rani Sarker, 2020. "Five Decades of Productivity and Efficiency Changes in World Agriculture (1969–2013)," Agriculture, MDPI, vol. 10(6), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michée A. Lachaud & Boris E. Bravo‐Ureta & Carlos E. Ludena, 2022. "Economic effects of climate change on agricultural production and productivity in Latin America and the Caribbean (LAC)," Agricultural Economics, International Association of Agricultural Economists, vol. 53(2), pages 321-332, March.
    2. Michée A. Lachaud & Boris E. Bravo‐Ureta, 2021. "Agricultural productivity growth in Latin America and the Caribbean: an analysis of climatic effects, catch‐up and convergence," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(1), pages 143-170, January.
    3. Lachaud, Michee Arnold & Bravo-Ureta, Boris E. & Ludena, Carlos E., 2015. "Agricultural productivity growth in Latin America and the Caribbean and other world regions: An analysis of climatic effects, convergence and catch-up," Working Papers 40, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.
    4. Islam, Nazrul & Xayavong, Vilaphonh & Kingwell, Ross, 2014. "Broadacre farm productivity and profitability in south-western Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), April.
    5. Feriga, Moustafa & Lozano Gracia, Nancy & Serneels, Pieter, 2024. "The Impact of Climate Change on Work Lessons for Developing Countries," IZA Discussion Papers 16914, Institute of Labor Economics (IZA).
    6. Dang, Hai-Anh & Hallegatte, Stephane & Trinh, Trong-Anh, 2023. "Does Global Warming Worsen Poverty and Inequality? An Updated Review," IZA Discussion Papers 16570, Institute of Labor Economics (IZA).
    7. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    8. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
    9. Lachaud, Michee & Bravo-Ureta, Boris & Ludena, Carlos, 2015. "Agricultural Productivity Growth in Latin America and the Caribbean (LAC): An analysis of Climatic Effects, Convergence, and Catch-up," 2015 Conference, August 9-14, 2015, Milan, Italy 211721, International Association of Agricultural Economists.
    10. Cécile Couharde & Rémi Generoso, 2015. "Hydro-climatic thresholds and economic growth reversals in developing countries: an empirical investigation," EconomiX Working Papers 2015-26, University of Paris Nanterre, EconomiX.
    11. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    12. David Colman, 2010. "Agriculture's terms of trade: issues and implications," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 1-15, November.
    13. Bryce Stewart & Terrence Veeman & James Unterschultz, 2009. "Crops and Livestock Productivity Growth in the Prairies: The Impacts of Technical Change and Scale," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(3), pages 379-394, September.
    14. Kahn, Matthew E. & Mohaddes, Kamiar & Ng, Ryan N.C. & Pesaran, M. Hashem & Raissi, Mehdi & Yang, Jui-Chung, 2021. "Long-term macroeconomic effects of climate change: A cross-country analysis," Energy Economics, Elsevier, vol. 104(C).
    15. David Castells-Quintana & Maria del Pilar Lopez-Uribe & Tom McDermott, 2015. "Climate change and the geographical and institutional drivers of economic development," GRI Working Papers 198, Grantham Research Institute on Climate Change and the Environment.
    16. Rodrigo Garcia‐Verdu & Alexis Meyer‐Cirkel & Akira Sasahara & Hans Weisfeld, 2022. "Importing inputs for climate change mitigation: The case of agricultural productivity," Review of International Economics, Wiley Blackwell, vol. 30(1), pages 34-56, February.
    17. Lopez-Uribe, Maria del Pilar & Castells-Quintana, David & McDermott, Thomas K. J., 2017. "Geography, institutions and development: a review ofthe long-run impacts of climate change," LSE Research Online Documents on Economics 65147, London School of Economics and Political Science, LSE Library.
    18. Zhang, Hongliang & Mu, Jianhong E. & McCarl, Bruce A., 2018. "Adaptation to climate change via adjustment in land leasing: Evidence from dryland wheat farms in the U.S. Pacific Northwest," Land Use Policy, Elsevier, vol. 79(C), pages 424-432.
    19. Ar'anzazu de Juan & Pilar Poncela & Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2022. "Economic activity and climate change," Papers 2206.03187, arXiv.org, revised Jun 2022.
    20. Chancellor, Will & Hughes, Neal & Zhao, Shiji & Soh, Wei Ying & Valle, Haydn & Boult, Christopher, 2021. "Controlling for the effects of climate on total factor productivity: A case study of Australian farms," Food Policy, Elsevier, vol. 102(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:143:y:2017:i:3:d:10.1007_s10584-017-2013-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.