IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v53y2022i2p321-332.html
   My bibliography  Save this article

Economic effects of climate change on agricultural production and productivity in Latin America and the Caribbean (LAC)

Author

Listed:
  • Michée A. Lachaud
  • Boris E. Bravo‐Ureta
  • Carlos E. Ludena

Abstract

Climate projections indicate that temperatures in Latin America and the Caribbean (LAC) will rise by between 1.6 °C and 4 °C by the end of the century while changes in precipitation levels are expected to vary significantly across the region. This article estimates the impact of climate change on total factor productivity (TFP) and production. It combines data from the University of East Anglia's Climatic Research Unit (CRU), the Intergovernmental Panel on Climate Change (IPCC), and the Food and Agriculture Organization (FAO) on 28 LAC countries for a 54‐year period (1961–2014) in order to inform policy makers of the cost of output losses in the absence of viable climate adaptation strategies. We use estimates of a random‐parameter stochastic production frontier (SPF) model specification to capture heterogeneity in technology and partial output elasticities across countries and unobserved environmental characteristics. Results show that change in output is mainly driven by an average annual TFP growth rate of .95%. Climate change induces significant reductions (9.03–12.7%) in productivity over the 2015–2050 period. In terms of output, these losses range from USD $14.7 to $31.4 billion dollars in the LAC region, depending on the scenario and the discount rate used.

Suggested Citation

  • Michée A. Lachaud & Boris E. Bravo‐Ureta & Carlos E. Ludena, 2022. "Economic effects of climate change on agricultural production and productivity in Latin America and the Caribbean (LAC)," Agricultural Economics, International Association of Agricultural Economists, vol. 53(2), pages 321-332, March.
  • Handle: RePEc:bla:agecon:v:53:y:2022:i:2:p:321-332
    DOI: 10.1111/agec.12682
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/agec.12682
    Download Restriction: no

    File URL: https://libkey.io/10.1111/agec.12682?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Benjamin F. Jones & Benjamin A. Olken, 2010. "Climate Shocks and Exports," American Economic Review, American Economic Association, vol. 100(2), pages 454-459, May.
    2. Giannis Karagiannis & Magnus Kellermann, 2019. "Stochastic frontier models with correlated effects," Journal of Productivity Analysis, Springer, vol. 51(2), pages 175-187, June.
    3. Michée A. Lachaud & Boris E. Bravo‐Ureta, 2021. "Agricultural productivity growth in Latin America and the Caribbean: an analysis of climatic effects, catch‐up and convergence," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(1), pages 143-170, January.
    4. Uris Lantz C. Baldos & Keith O. Fuglie & Thomas W. Hertel, 2020. "The research cost of adapting agriculture to climate change: A global analysis to 2050," Agricultural Economics, International Association of Agricultural Economists, vol. 51(2), pages 207-220, March.
    5. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    6. Nin Pratt, Alejandro & Falconi, César & Ludeña, Carlos E. & Martel, Pedro, 2015. "Productivity and the Performance of Agriculture in Latin America and the Caribbean: From the Lost Decade to the Commodity Boom," IDB Publications (Working Papers) 7306, Inter-American Development Bank.
    7. Boris E. Bravo‐Ureta & Víctor H. Moreira & Javier L. Troncoso & Alan Wall, 2020. "Plot‐level technical efficiency accounting for farm‐level effects: Evidence from Chilean wine grape producers," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 811-824, November.
    8. repec:oup:apecpp:v:40:y:2018:i:3:p:421-444. is not listed on IDEAS
    9. Eldon V Ball & Sun L Wang & Richard Nehring & Roberto Mosheim, 2016. "Productivity and Economic Growth in U.S. Agriculture: A New Look," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 38(1), pages 30-49.
    10. Tim J. Coelli & D. S. Prasada Rao, 2005. "Total factor productivity growth in agriculture: a Malmquist index analysis of 93 countries, 1980–2000," Agricultural Economics, International Association of Agricultural Economists, vol. 32(s1), pages 115-134, January.
    11. Walter Vergara & Ana R. Rios & Luis Miguel Galindo Paliza & Pablo Gutman & Paul Isbell & Paul Hugo Suding & Joseluis Samaniego, 2013. "The Climate and Development Challenge for Latin America and the Caribbean: Options for Climate-Resilient, Low-Carbon Development," IDB Publications (Books), Inter-American Development Bank, number 80518, February.
    12. Chen, Shuai & Chen, Xiaoguang & Xu, Jintao, 2013. "Impacts of Climate Change on Corn and Soybean Yields in China," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149739, Agricultural and Applied Economics Association.
    13. Clemente, Jesus & Montanes, Antonio & Reyes, Marcelo, 1998. "Testing for a unit root in variables with a double change in the mean," Economics Letters, Elsevier, vol. 59(2), pages 175-182, May.
    14. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    15. Wallace E. Huffman & Yu Jin & Zheng Xu, 2018. "The economic impacts of technology and climate change: New evidence from U.S. corn yields," Agricultural Economics, International Association of Agricultural Economists, vol. 49(4), pages 463-479, July.
    16. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    17. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    18. Vittorio Corbo & Klaus Schmidt-Hebbel, 2013. "The International Crisis and Latin America," Monetaria, Centro de Estudios Monetarios Latinoamericanos, CEMLA, vol. 0(1), pages 37-62, January-j.
    19. Robert G. Chambers & Simone Pieralli, 2020. "The Sources of Measured US Agricultural Productivity Growth: Weather, Technological Change, and Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1198-1226, August.
    20. Bharati, Preeti & Fulginiti, Lilyan, 2007. "Institutions and Agricultural Productivity in Mercosur," MPRA Paper 9669, University Library of Munich, Germany.
    21. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    22. Salvador Barrios & Luisito Bertinelli & Eric Strobl, 2010. "Trends in Rainfall and Economic Growth in Africa: A Neglected Cause of the African Growth Tragedy," The Review of Economics and Statistics, MIT Press, vol. 92(2), pages 350-366, May.
    23. repec:idb:brikps:80518 is not listed on IDEAS
    24. Barbara Rossi & Tatevik Sekhposyan, 2016. "Forecast Rationality Tests in the Presence of Instabilities, with Applications to Federal Reserve and Survey Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 507-532, April.
    25. Havlík,Petr & Valin,Hugo Jean Pierre & Gusti,Mykola & Schmid,Erwin & Forsell,Nicklas & Herrero,Mario & Khabarov,Nikolay & Mosnier,Aline & Cantele,Matthew & Obersteiner,Michael, 2015. "Climate change impacts and mitigation in the developing world : an integrated assessment of the agriculture and forestry sectors," Policy Research Working Paper Series 7477, The World Bank.
    26. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    27. Robert A. Yaffee, 2010. "Forecast evaluation with Stata," United Kingdom Stata Users' Group Meetings 2010 10, Stata Users Group.
    28. Eric Njuki & Boris E. Bravo-Ureta & Christopher J. O’Donnell, 2019. "Decomposing agricultural productivity growth using a random-parameters stochastic production frontier," Empirical Economics, Springer, vol. 57(3), pages 839-860, September.
    29. Nin-Prat, Alejandro & Falconi, Cesar & Ludena, Carlos & Martel, Pedro, 2015. "Productivity and the Performance of Agriculture in Latin America and the Caribbean: From the Lost Decade to the Commodity Boom," 2015 Conference, August 9-14, 2015, Milan, Italy 211725, International Association of Agricultural Economists.
    30. Michee Arnold Lachaud & Boris E. Bravo-Ureta & Carlos E. Ludena, 2017. "Agricultural productivity in Latin America and the Caribbean in the presence of unobserved heterogeneity and climatic effects," Climatic Change, Springer, vol. 143(3), pages 445-460, August.
    31. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chandio, Abbas Ali & Dash, Devi Prasad & Nathaniel, Solomon Prince & Sargani, Ghulam Raza & Jiang, Yuansheng, 2023. "Mitigation pathways towards climate change: Modelling the impact of climatological factors on wheat production in top six regions of China," Ecological Modelling, Elsevier, vol. 481(C).
    2. Wanglin Ma & Sanghyun Hong & W. Robert Reed & Jianhua Duan & Phong Luu, 2023. "Yield effects of agricultural cooperative membership in developing countries: A meta‐analysis," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 94(3), pages 761-780, September.
    3. Danelon, André Felipe & Spolador, Humberto Francisco Silva & Bergtold, Jason Scott, 2023. "The role of productivity and efficiency gains in the sugar-ethanol industry to reduce land expansion for sugarcane fields in Brazil," Energy Policy, Elsevier, vol. 172(C).
    4. Tadadjeu, Sosson & Njangang, Henri & Woldemichael, Andinet, 2023. "Are resource-rich countries less responsive to global warming? Oil wealth and climate change policy," Energy Policy, Elsevier, vol. 182(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michée A. Lachaud & Boris E. Bravo‐Ureta, 2021. "Agricultural productivity growth in Latin America and the Caribbean: an analysis of climatic effects, catch‐up and convergence," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(1), pages 143-170, January.
    2. Lachaud, Michee & Bravo-Ureta, Boris & Ludena, Carlos, 2015. "Agricultural Productivity Growth in Latin America and the Caribbean (LAC): An analysis of Climatic Effects, Convergence, and Catch-up," 2015 Conference, August 9-14, 2015, Milan, Italy 211721, International Association of Agricultural Economists.
    3. Bravo-Ureta, Boris E. & Njuki, Eric & Palacios, Ana Claudia & Salazar, Lina, 2022. "Agricultural Productivity in El Salvador: A Preliminary Analysis," IDB Publications (Working Papers) 11984, Inter-American Development Bank.
    4. Lachaud, Michee Arnold & Bravo-Ureta, Boris E. & Ludena, Carlos E., 2015. "Agricultural productivity growth in Latin America and the Caribbean and other world regions: An analysis of climatic effects, convergence and catch-up," Working Papers 40, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.
    5. Michee Arnold Lachaud & Boris E. Bravo-Ureta & Carlos E. Ludena, 2017. "Agricultural productivity in Latin America and the Caribbean in the presence of unobserved heterogeneity and climatic effects," Climatic Change, Springer, vol. 143(3), pages 445-460, August.
    6. García-Suarez, Federico, 2021. "Productivity and Efficiency in Uruguay: A Stochastic Approach," 2021 Conference, August 17-31, 2021, Virtual 313805, International Association of Agricultural Economists.
    7. Murat Doğanlar & Faruk Mike & Oktay Kızılkaya, 2022. "The impact of climate change on aggregate output in middle‐ and high‐income countries," Australian Economic Papers, Wiley Blackwell, vol. 61(1), pages 72-86, March.
    8. Julien, Jacques C. & Bravo-Ureta, Boris E. & Rada, Nicholas E., 2023. "Gender and agricultural Productivity: Econometric evidence from Malawi, Tanzania, and Uganda," World Development, Elsevier, vol. 171(C).
    9. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    10. Lajos Baráth & Imre Fertő & Heinrich Hockmann, 2020. "Technological Differences, Theoretical Consistency, and Technical Efficiency: The Case of Hungarian Crop-Producing Farms," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    11. Rodrigo Garcia‐Verdu & Alexis Meyer‐Cirkel & Akira Sasahara & Hans Weisfeld, 2022. "Importing inputs for climate change mitigation: The case of agricultural productivity," Review of International Economics, Wiley Blackwell, vol. 30(1), pages 34-56, February.
    12. Letta, Marco & Montalbano, Pierluigi & Tol, Richard S.J., 2018. "Temperature shocks, short-term growth and poverty thresholds: Evidence from rural Tanzania," World Development, Elsevier, vol. 112(C), pages 13-32.
    13. Boris E. Bravo‐Ureta & Víctor H. Moreira & Javier L. Troncoso & Alan Wall, 2020. "Plot‐level technical efficiency accounting for farm‐level effects: Evidence from Chilean wine grape producers," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 811-824, November.
    14. K Hervé Dakpo & Laure Latruffe & Yann Desjeux & Philippe Jeanneaux, 2021. "Latent Class Modelling for a Robust Assessment of Productivity: Application to French Grazing Livestock Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(3), pages 760-781, September.
    15. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
    16. Li Chen & Bin Jiang & Chuan Wang, 2023. "Climate change and urban total factor productivity: evidence from capital cities and municipalities in China," Empirical Economics, Springer, vol. 65(1), pages 401-441, July.
    17. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    18. Cécile Couharde & Rémi Generoso, 2015. "Hydro-climatic thresholds and economic growth reversals in developing countries: an empirical investigation," EconomiX Working Papers 2015-26, University of Paris Nanterre, EconomiX.
    19. Martin Henseler & Ingmar Schumacher, 2019. "The impact of weather on economic growth and its production factors," Climatic Change, Springer, vol. 154(3), pages 417-433, June.
    20. Sheng, Yu & Xu, Xinpeng, 2019. "The productivity impact of climate change: Evidence from Australia's Millennium drought," Economic Modelling, Elsevier, vol. 76(C), pages 182-191.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:53:y:2022:i:2:p:321-332. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.