IDEAS home Printed from https://ideas.repec.org/p/boc/usug10/10.html
   My bibliography  Save this paper

Forecast evaluation with Stata

Author

Listed:
  • Robert A. Yaffee

    (Silver School of Social Work, New York University)

Abstract

Forecasters are expected to provide evaluations of their forecasts along with their forecasts. The forecast assessments demonstrate comparative, adequate, or optimal accuracy by common forecasting criteria to provide acceptable credence in the forecasts. To assist the Stata user in this process, Robert Yaffee has written Stata programs to evaluate ARIMA and GARCH models. He explains how these assessment programs are applied to one-step-ahead and dynamic forecasts, ex post and ex ante forecasts, conditional and unconditional forecasts, as well as combinations of forecasts. In his presentation, he will also demonstrate how assessment can be applied to rolling origin forecasts of time-series models.

Suggested Citation

  • Robert A. Yaffee, 2010. "Forecast evaluation with Stata," United Kingdom Stata Users' Group Meetings 2010 10, Stata Users Group.
  • Handle: RePEc:boc:usug10:10
    as

    Download full text from publisher

    File URL: http://repec.org/usug2010/Yaffee_London.pdf
    File Function: presentation
    Download Restriction: no

    File URL: http://repec.org/usug2010/foreval.zip
    Download Restriction: no

    File URL: http://repec.org/usug2010/oforeval.zip
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garrouste, Christelle, 2011. "Towards a benchmark on the contribution of education and training to employability: methodological note," MPRA Paper 37153, University Library of Munich, Germany.
    2. Michée A. Lachaud & Boris E. Bravo‐Ureta & Carlos E. Ludena, 2022. "Economic effects of climate change on agricultural production and productivity in Latin America and the Caribbean (LAC)," Agricultural Economics, International Association of Agricultural Economists, vol. 53(2), pages 321-332, March.
    3. Wadud, Zia & Dey, Himadri S. & Kabir, Md. Ashfanoor & Khan, Shahidul I., 2011. "Modeling and forecasting natural gas demand in Bangladesh," Energy Policy, Elsevier, vol. 39(11), pages 7372-7380.
    4. Christelle Garrouste, 2011. "Towards a Benchmark on the Contribution of Education and Training to Employability: Methodological Note. EUR 24616 EN," Working Papers hal-03245317, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    2. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    3. Luis Fernando Melo Velandia & Martha Alicia Misas Arango, 2004. "Modelos Estructurales de Inflación en Colombia: Estimación a través de Mínimos Cuadrados Flexibles," Borradores de Economia 3244, Banco de la Republica.
    4. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    5. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    6. J. James Reade & Ulrich Volz, 2009. "Too Much to Lose, or More to Gain? Should Sweden Join the Euro?," Economics Series Working Papers 442, University of Oxford, Department of Economics.
    7. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, "undated". "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    8. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    9. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    10. Mandalinci, Zeyyad, 2017. "Forecasting inflation in emerging markets: An evaluation of alternative models," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1082-1104.
    11. Piero Ferri & Anna Maria Variato, 2007. "Macro Dynamics in a Model with Uncertainty," Working Papers (-2012) 0704, University of Bergamo, Department of Economics.
    12. Kapetanios, G. & Pagan, A. & Scott, A., 2007. "Making a match: Combining theory and evidence in policy-oriented macroeconomic modeling," Journal of Econometrics, Elsevier, vol. 136(2), pages 565-594, February.
    13. Kenneth S. Rogoff & Vania Stavrakeva, 2008. "The Continuing Puzzle of Short Horizon Exchange Rate Forecasting," NBER Working Papers 14071, National Bureau of Economic Research, Inc.
    14. Emilio Fernandez-Corugedo & John Muellbauer, 2006. "Consumer credit conditions in the United Kingdom," Bank of England working papers 314, Bank of England.
    15. Adusei Jumah & Robert M. Kunst, 2016. "Optimizing time-series forecasts for inflation and interest rates using simulation and model averaging," Applied Economics, Taylor & Francis Journals, vol. 48(45), pages 4366-4378, September.
    16. Melisso Boschi & Alessandro Girardi, 2005. "Euro Area inflation: long-run determinants and short-run dynamics," ISAE Working Papers 60, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
    17. Lars-Erik Öller & Lasse Koskinen, 2004. "A classifying procedure for signalling turning points," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(3), pages 197-214.
    18. Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
    19. Anindya Banerjee & Massimiliano Marcellino & Igor Masten, 2005. "Leading Indicators for Euro‐area Inflation and GDP Growth," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 785-813, December.
    20. Espasa, Antoni & Albacete, Rebeca, 2004. "Considerations on economic forecasting: method developed in the bulletin of EU and US inflation and macroeconomic analysis," DES - Working Papers. Statistics and Econometrics. WS ws045013, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:usug10:10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.