IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v51y2020i6p811-824.html
   My bibliography  Save this article

Plot‐level technical efficiency accounting for farm‐level effects: Evidence from Chilean wine grape producers

Author

Listed:
  • Boris E. Bravo‐Ureta
  • Víctor H. Moreira
  • Javier L. Troncoso
  • Alan Wall

Abstract

This paper applies alternative panel data models to a cross‐sectional dataset that contains observations at the plot level for a sample of wine‐grape farms in Central Chile. The input–output data as well as key attributes of the production system are at the plot level, at which individualized management exists. However, plots belonging to a particular farm are also subject to overall centralized (farm‐level) management. Thus, this data configuration offers the possibility of analyzing technical efficiency (TE) both across plots and across farms. A Generalized True Random Effects model, which permits the separate identification of farm‐level and plot‐level inefficiency while controlling for unobserved farm‐level heterogeneity, shows that TE varies across farms but not among plots within the same farm. Geographical location also affects grape production and agro‐climatic conditions influence production levels, with grape farms located on cooler zones producing significantly less than their counterparts in warmer zones, as expected. The analysis underscores the value of using recent methodologies typically applied to panel data when cross‐sectional information is available for individual plots within a farm unit or in similar settings.

Suggested Citation

  • Boris E. Bravo‐Ureta & Víctor H. Moreira & Javier L. Troncoso & Alan Wall, 2020. "Plot‐level technical efficiency accounting for farm‐level effects: Evidence from Chilean wine grape producers," Agricultural Economics, International Association of Agricultural Economists, vol. 51(6), pages 811-824, November.
  • Handle: RePEc:bla:agecon:v:51:y:2020:i:6:p:811-824
    DOI: 10.1111/agec.12593
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/agec.12593
    Download Restriction: no

    File URL: https://libkey.io/10.1111/agec.12593?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roberto Colombi & Subal Kumbhakar & Gianmaria Martini & Giorgio Vittadini, 2014. "Closed-skew normality in stochastic frontiers with individual effects and long/short-run efficiency," Journal of Productivity Analysis, Springer, vol. 42(2), pages 123-136, October.
    2. Abdul-Rahaman, Awal & Abdulai, Awudu, 2018. "Do farmer groups impact on farm yield and efficiency of smallholder farmers? Evidence from rice farmers in northern Ghana," Food Policy, Elsevier, vol. 81(C), pages 95-105.
    3. Massimo Filippini & William Greene, 2016. "Persistent and transient productive inefficiency: a maximum simulated likelihood approach," Journal of Productivity Analysis, Springer, vol. 45(2), pages 187-196, April.
    4. Bravo-Ureta, Boris E. & Jara-Rojas, Roberto & Lachaud, Michee A. & Moreira, Victor H., 2017. "A Meta Analysis of Farm Efficiency: Evidence from the Production Frontier Literature," Research Reports 290067, University of Connecticut, Charles J. Zwick Center for Food and Resource Policy.
    5. Giannis Karagiannis & Magnus Kellermann, 2019. "Stochastic frontier models with correlated effects," Journal of Productivity Analysis, Springer, vol. 51(2), pages 175-187, June.
    6. Tim Coelli & Antonio Estache & Sergio Perelman & Lourdes Trujillo, 2003. "A Primer on Efficiency Measurement for Utilities and Transport Regulators," World Bank Publications - Books, The World Bank Group, number 15149, December.
    7. Joost M.E. Pennings & Scott H. Irwin & Darrel L. Good, 2002. "Surveying Farmers: A Case Study," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 24(1), pages 266-277.
    8. Townsend, R. F. & Kirsten, J. & Vink, N., 1998. "Farm size, productivity and returns to scale in agriculture revisited: a case study of wine producers in South Africa," Agricultural Economics, Blackwell, vol. 19(1-2), pages 175-180, September.
    9. Arne Henningsen & Christian Henning, 2009. "Imposing regional monotonicity on translog stochastic production frontiers with a simple three-step procedure," Journal of Productivity Analysis, Springer, vol. 32(3), pages 217-229, December.
    10. Blair, Roger D. & Lusky, Rafael, 1975. "A note on the influence of uncertainty on estimation of production function models," Journal of Econometrics, Elsevier, vol. 3(4), pages 391-394, November.
    11. Subal Kumbhakar & Gudbrand Lien & J. Hardaker, 2014. "Technical efficiency in competing panel data models: a study of Norwegian grain farming," Journal of Productivity Analysis, Springer, vol. 41(2), pages 321-337, April.
    12. Laure Latruffe & Céline Nauges, 2014. "Technical efficiency and conversion to organic farming: the case of France," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 41(2), pages 227-253.
    13. James Carroll & Carol Newman & Fiona Thorne, 2007. "A Comparison of Stochastic Frontier Approaches to Estimating Inefficiency and Total Factor Productivity: An Application to Irish Dairy Farming," Trinity Economics Papers tep0907, Trinity College Dublin, Department of Economics.
    14. Johansson, Robert & Effland, Anne & Coble, Keith, 2017. "Falling Response Rates to USDA Crop Surveys: Why It Matters," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 7, January.
    15. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    16. Bruce D. Meyer & Wallace K. C. Mok & James X. Sullivan, 2015. "Household Surveys in Crisis," Journal of Economic Perspectives, American Economic Association, vol. 29(4), pages 199-226, Fall.
    17. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    18. Ogundari, Kolawole, 2014. "The Paradigm of Agricultural Efficiency and its Implication on Food Security in Africa: What Does Meta-analysis Reveal?," World Development, Elsevier, vol. 64(C), pages 690-702.
    19. Awudu Abdulai & Hendrik Tietje, 2007. "Estimating technical efficiency under unobserved heterogeneity with stochastic frontier models: application to northern German dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 34(3), pages 393-416, September.
    20. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    21. Nicolas Debarsy, 2012. "The Mundlak Approach in the Spatial Durbin Panel Data Model," Spatial Economic Analysis, Taylor & Francis Journals, vol. 7(1), pages 109-131, March.
    22. Pilar A. Jano, 2017. "Quality Choice and Market Access: Evidence from Chilean Wine Grape Production," Agribusiness, John Wiley & Sons, Ltd., vol. 33(3), pages 324-338, June.
    23. Beatrice Conradie & Graham Cookson & Colin Thirtle, 2006. "Efficiency And Farm Size In Western Cape Grape Production: Pooling Small Datasets," South African Journal of Economics, Economic Society of South Africa, vol. 74(2), pages 334-343, June.
    24. Andrés J. Picazo‐Tadeo & Alan Wall, 2011. "Production risk, risk aversion and the determination of risk attitudes among Spanish rice producers," Agricultural Economics, International Association of Agricultural Economists, vol. 42(4), pages 451-464, July.
    25. Efthymios G. Tsionas & Subal C. Kumbhakar, 2014. "FIRM HETEROGENEITY, PERSISTENT AND TRANSIENT TECHNICAL INEFFICIENCY: A GENERALIZED TRUE RANDOM‐EFFECTS model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 110-132, January.
    26. Jeremy G. Weber & Dawn Marie Clay, 2013. "Who Does Dot Respond to the Agricultural Resource Management Survey and Does It Matter?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(3), pages 755-771.
    27. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    28. Mehdi Farsi & Massimo Filippini & Michael Kuenzle, 2005. "Unobserved heterogeneity in stochastic cost frontier models: an application to Swiss nursing homes," Applied Economics, Taylor & Francis Journals, vol. 37(18), pages 2127-2141.
    29. Eric Njuki & Boris E. Bravo-Ureta, 2015. "The Economic Costs of Environmental Regulation in U.S. Dairy Farming: A Directional Distance Function Approach," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 97(4), pages 1087-1106.
    30. Michee Arnold Lachaud & Boris E. Bravo-Ureta & Carlos E. Ludena, 2017. "Agricultural productivity in Latin America and the Caribbean in the presence of unobserved heterogeneity and climatic effects," Climatic Change, Springer, vol. 143(3), pages 445-460, August.
    31. James Carroll & Carol Newman & Fiona Thorne, 2011. "A comparison of stochastic frontier approaches for estimating technical inefficiency and total factor productivity," Applied Economics, Taylor & Francis Journals, vol. 43(27), pages 4007-4019.
    32. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bravo-Ureta, Boris E. & Njuki, Eric & Palacios, Ana Claudia & Salazar, Lina, 2022. "Agricultural Productivity in El Salvador: A Preliminary Analysis," IDB Publications (Working Papers) 11984, Inter-American Development Bank.
    2. Lassalas, Marie & Duvaleix, Sabine & Latruffe, Laure, 2021. "Stringency of environmental standards, yield, product quality and revenue: Evidence from French wheat production," 2021 Conference, August 17-31, 2021, Virtual 315184, International Association of Agricultural Economists.
    3. Zheng, Hongyun & Ma, Wanglin & Wang, Fang & Li, Gucheng, 2021. "Does internet use improve technical efficiency of banana production in China? Evidence from a selectivity-corrected analysis," Food Policy, Elsevier, vol. 102(C).
    4. Michée A. Lachaud & Boris E. Bravo‐Ureta & Carlos E. Ludena, 2022. "Economic effects of climate change on agricultural production and productivity in Latin America and the Caribbean (LAC)," Agricultural Economics, International Association of Agricultural Economists, vol. 53(2), pages 321-332, March.
    5. Owusu, Eric S. & Bravo-Ureta, Boris E., 2022. "Reap when you sow? The productivity impacts of early sowing in Malawi," Agricultural Systems, Elsevier, vol. 199(C).
    6. Bopp, Carlos & Jara-Rojas, Roberto & Bravo-Ureta, Boris & Engler, Alejandra, 2022. "Irrigation water use, shadow values and productivity: Evidence from stochastic production frontiers in vineyards," Agricultural Water Management, Elsevier, vol. 271(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bravo-Ureta, Boris E. & Njuki, Eric & Palacios, Ana Claudia & Salazar, Lina, 2022. "Agricultural Productivity in El Salvador: A Preliminary Analysis," IDB Publications (Working Papers) 11984, Inter-American Development Bank.
    2. Raushan Bokusheva & Lukáš Čechura & Subal C. Kumbhakar, 2023. "Estimating persistent and transient technical efficiency and their determinants in the presence of heterogeneity and endogeneity," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(2), pages 450-472, June.
    3. Roberto Colombi & Gianmaria Martini & Giorgio Vittadini, 2017. "Determinants of transient and persistent hospital efficiency: The case of Italy," Health Economics, John Wiley & Sons, Ltd., vol. 26(S2), pages 5-22, September.
    4. Lachaud, Michee Arnold & Bravo-Ureta, Boris E. & Ludena, Carlos E., 2015. "Agricultural productivity growth in Latin America and the Caribbean and other world regions: An analysis of climatic effects, convergence and catch-up," Working Papers 40, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.
    5. Rawat, Pankaj S. & Sharma, Seema, 2021. "TFP growth, technical efficiency and catch-up dynamics: Evidence from Indian manufacturing," Economic Modelling, Elsevier, vol. 103(C).
    6. Subal C. Kumbhakar & Gudbrand Lien, 2017. "Yardstick Regulation of Electricity Distribution Disentangling Short-run and Long-run Inefficiencies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5).
    7. Bernstein, David H., 2020. "An updated assessment of technical efficiency and returns to scale for U.S. electric power plants," Energy Policy, Elsevier, vol. 147(C).
    8. Massimo Filippini & William Greene, 2016. "Persistent and transient productive inefficiency: a maximum simulated likelihood approach," Journal of Productivity Analysis, Springer, vol. 45(2), pages 187-196, April.
    9. Pontus Mattsson & Jonas Mansson & William H. Greene, 2018. "TFP Change and its Components for Swedish Manufacturing Firms During the 2008-2009 Financial Crisis," Working Papers 18-27, New York University, Leonard N. Stern School of Business, Department of Economics.
    10. Lachaud, Michee & Bravo-Ureta, Boris & Ludena, Carlos, 2015. "Agricultural Productivity Growth in Latin America and the Caribbean (LAC): An analysis of Climatic Effects, Convergence, and Catch-up," 2015 Conference, August 9-14, 2015, Milan, Italy 211721, International Association of Agricultural Economists.
    11. Julien, Jacques C. & Bravo-Ureta, Boris E. & Rada, Nicholas E., 2023. "Gender and agricultural Productivity: Econometric evidence from Malawi, Tanzania, and Uganda," World Development, Elsevier, vol. 171(C).
    12. Castiglione, Concetta & Infante, Davide & Zieba, Marta, 2023. "Public support for performing arts. Efficiency and productivity gains in eleven European countries," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    13. Massimo Filippini & Lester C. Hunt, 2013. "'Underlying Energy Efficiency' in the US," CER-ETH Economics working paper series 13/181, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    14. Emilie Caldeira & Alou Adessé Dama & Ali Compaoré & Mario Mansour & Grégoire Rota-Graziosi, 2020. "Tax effort in Sub-Saharan African countries : evidence from a new dataset," Working Papers hal-02543162, HAL.
    15. Gralka, Sabine, 2018. "Stochastic frontier analysis in higher education: A systematic review," CEPIE Working Papers 05/18, Technische Universität Dresden, Center of Public and International Economics (CEPIE).
    16. Martini, Gianmaria & Scotti, Davide & Viola, Domenico & Vittadini, Giorgio, 2020. "Persistent and temporary inefficiency in airport cost function: An application to Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 999-1019.
    17. Émilie Caldeira & Ali Compaore & Alou Adessé Dama & Mario Mansour & Grégoire Rota-Graziosi, 2019. "Effort fiscal en Afrique subsaharienne : les résultats d’une nouvelle base de données," Revue d’économie du développement, De Boeck Université, vol. 27(4), pages 5-51.
    18. Skevas, Ioannis & Skevas, Theodoros, 2021. "A generalized true random-effects model with spatially autocorrelated persistent and transient inefficiency," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1131-1142.
    19. Daniel Albalate & Jordi Rosell, 2016. "Persistent and transient efficiency on the stochastic production and cost frontiers – an application to the motorway sector," Working Papers XREAP2016-04, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2016.
    20. Bravo-Ureta, Boris E. & Jara-Rojas, Roberto & Lachaud, Michee A. & Moreira L., Victor H. & Scheierling, Susanne M., 2015. "Water and Farm Efficiency: Insights from the Frontier Literature," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 206076, Agricultural and Applied Economics Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:51:y:2020:i:6:p:811-824. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.